Skip to main content
Log in

Steam Reforming of Hydrocarbons for Synthesis Gas Production

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Billingham UK, where Mike Spencer spent his entire industrial career, has long been associated with the use of steam reforming for the production of synthesis gas required for the manufacture of some important chemicals, particularly ammonia and methanol. This paper describes the steam reforming process and presents some of the history of the development of tubular reforming. The catalysts, technology and industrial operation of plants are briefly reviewed. Newer technologies, such as adiabatic reforming, autothermal reforming (ATR) and gas heated reforming (GHR) that aim to increase efficiency of and reduce the environmental impact of conventional steam reforming processes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

Not Applicable.

Code Availability

Not Applicable.

References

  1. Murkins C, Brightling J (2016) Johnson Matthey Technol Rev 60(4):263–269

    Google Scholar 

  2. Sheldon D (2017) Johnson Matthey Technol Rev 61(3):172–182

    CAS  Google Scholar 

  3. French SA (2020) Johnson Matthey Technol Rev 64(3):357–370

    CAS  Google Scholar 

  4. Appl M (1999) Ammonia Principles and Industrial Practise p5 -8, Wiley-VCH Weinheim

  5. Brightling J, Pach J (2013) AICHE 58th Annual Safety in Ammonia Plants and Related Facilities Symposium 231–245

  6. Brightling J (2018) Johnson Matthey Technol Rev 62(1):32–47

    CAS  Google Scholar 

  7. Lloyd L (2011) Synthesis Gas, in Handbook of Industrial Catalysts, Springer New York Dordrecht Heidelberg London

    Google Scholar 

  8. Ridler DE, Twigg MV (1996) Steam reforming, in: Twigg MV (ed) Catalyst Handbook, 2nd Edn, Chippenham: Manson Publishing Ltd

    Google Scholar 

  9. Rostrup-Nielsen JR (1984) Catalytic Steam Reforming, in: Anderson JR, Boudart M, eds Catalysis Science and Technology, Vol 5, Springer-Verlag, Berlin

    Google Scholar 

  10. Davies HS, Lacy JA (1972) 38th Autumn Research Meeting of the Institute of Gas Engineers, London.

  11. Pach J (2009) AICHE 54th Annual Safety in Ammonia Plants and Related Facilities Symposium, 263–271

  12. Shao M (2016) Doosan Fuel Cell America Inc, Hydrocarbon reformer including core-shell catalyst. United States Patent 0354763

    Google Scholar 

  13. Kvasnicka A (2012) Erhöhung der Lebensdauer von Brennstoffzellensystemen durch Ammoniak-Entfernung. https://www.iuta.de/igf-docs/schlussbericht_16199n_final.pdf. Accessed 20 Aug 2021

  14. Xu J, Froment GF (1989) AIChE J 35:88–96

    CAS  Google Scholar 

  15. Aparicio LM (1997) J Catal 165:262–274

    CAS  Google Scholar 

  16. Wei J, Iglesia E (2004) J Catal 224:370–383

    CAS  Google Scholar 

  17. Jones G, Jakobsen JG, Shim SS, Kleis J, Anderson MP, Rossmeisl J, Abild-Pedersen JF, Bligaard T, Helvig S, Hinnemann B, Rostrup-Nielsen JR, Chorkendorff I, Sehested J, Norskov JK (2008) J Catal 259:147–160

    CAS  Google Scholar 

  18. Snoeck JW, Froment GF, Fowles M (1997) J Catal 169:240–249

    CAS  Google Scholar 

  19. Helvig S, Sehested J, Rostrup-Nielsen JR (2011) Catal Today 178:42–46

    Google Scholar 

  20. Phillips TR, Yarwood TA, Mulhall J, Turner GE (1970) J Catal 17:28–34

    CAS  Google Scholar 

  21. Rostrup-Nielsen JR, Trimm DL (1971) J Catal 48:155–165

    Google Scholar 

  22. Mosely F, Stephens RW, Stewart KD, Wood J (1972) J Catal 24:18–39

    Google Scholar 

  23. Glasier GF, Pacey PD (2001) Carbon 39:15–23

    CAS  Google Scholar 

  24. Dent FJ, Moignard LA, Eastwood AH, Blackburn WH, Hebden D (1945) 49th Report of the joint Research Committee, Trans. Inst. Gas Engineers 95:604–709

  25. Rostrup-Nielsen JR (1984) Catalytic Steam Reforming, in: Anderson JR, Boudart M, eds Catalysis Science and Technology, Vol 5, Springer-Verlag, Berlin, pp 82–85

    Google Scholar 

  26. Andrews SPS (1969) I&EC Product Res Dev 8:322–324

    Google Scholar 

  27. Carlsson M (2015) Johnson Matthey Technol Rev 59(4):313–318

    Google Scholar 

  28. Snoeck JW, Froment GF, Fowles M (2002) Ind Eng Chem Res 41(15):3548–3556

    CAS  Google Scholar 

  29. Hadden RA, Howe JC, Waugh KC (1991). In: Bartholomew CH, Butt JB (eds) Studies in surface science and catalysis, vol 68. Elsevier, New York, USA, p 1991

    Google Scholar 

  30. Bengaard HS, Nørskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) J Catal 209:365

    CAS  Google Scholar 

  31. McCarty JG, Wise H (1980) J Chem Phys 72(12):6332–6336

    CAS  Google Scholar 

  32. Bartholomew CH, Agrawal PK, Katzer JR (1982) Adv Catal 31:135–242

    CAS  Google Scholar 

  33. Rostrup-Nielsen JR (1984) J Catal 85:31–43

    CAS  Google Scholar 

  34. Argyle MD, Bartholomew CH (2015) Catalysts 5:145–269

    CAS  Google Scholar 

  35. Rostrup-Nielsen JR (1984) Catalytic Steam Reforming, in: Anderson JR, Boudart M, eds Catalysis Science and Technology, Vol 5, Springer-Verlag, Berlin, pp 95–101

    Google Scholar 

  36. Broadhurst P, Lynch FE, MacLeod N (2011) The science of catalysis. The chemistry within your catalysts. Part One: Fundamentals and feedstock purification. Nitrogen+Syngas 310:4–8

    Google Scholar 

  37. Carnell PJ (1985) ICI Catalysts, Feedstock Purification for Modern Ammonia, Methanol & Hydrogen Plants, Paper 56

  38. Okada O, Tabata T, Masuda M (1990) Osaka Gas Company Ltd, A process for steam reforming of hydrocarbons. European Patent 0398251

    Google Scholar 

  39. Beyer F, Brightling J, Farnell P, Foster C (2005) AICHE 50th Annual Safety in Ammonia Plants and Related Facilities Symposium 190–201

  40. Brightling J, Cotton B (2004) AICHE 49th Annual Safety in Ammonia Plants and Related Facilities Symposium 244–2453

  41. Kunz RG (1998) J Air Waste Manag Assoc 48:26–34

    CAS  PubMed  Google Scholar 

  42. Carlsson MPU, Oliver JG, Feaviour MR, Birdsall DJ, French SA (2012) Johnson Matthey Plc, Catalyst preparation method, European Patent 2424657

    Google Scholar 

  43. Farnell PW (2016) Top Catal 59:8012–8808

    Google Scholar 

  44. Cotton B, Broadhurst P (2004) AICHE 49th Annual Safety in Ammonia Plants and Related Facilities Symposium 350–362

  45. Cross J, Jones G, Kent MA (2016) Nitrogen-Syngas 341:1–9

    Google Scholar 

  46. Richardson JT, Scales R, Twigg MV (2003) Appl CatalA-Gen 267:35–46

    Google Scholar 

  47. Bank RGS, Williams A (1980) British Gas Corporation, Steam reforming catalysts and their preparation, European Patent 0010114

    Google Scholar 

  48. Cotton WJ, Fowles M, Hadden R (2003) The Benefits of using CRG-LH in Pre-reforming Reactors, in Proceedings of International Methanol Technology Operators Forum (IMTOF) London, UK

    Google Scholar 

  49. Aasberg-Petersen K, Bak Hansen J-H, Christensen TS, Dybkjaer I, Seier Christensen P, Stub Nielsen C, Winter Madsen SEL, Rostrup-Nielsen JR (2001) Appl CatalA-Gen 221:379–387

    CAS  Google Scholar 

  50. Farnell PW, Fowles M (2005) High stability autothermal reforming catalysts, in Proceedings of International Methanol Technology Operators Forum (IMTOF), London, UK

    Google Scholar 

  51. Farnell PW, Mowbray K (2015) Nitrogen Syngas, International Conference & Exhibition (Istanbul 23–26 February) 55–64

  52. Armitage P, Elkins KJ, Kitchen D, Pinto A (1991) AICHE 36th Annual Safety in Ammonia Plants and Related Facilities Symposium 111–121

  53. Farnell PW (1995) AICHE 40th Annual Safety in Ammonia Plants and Related Facilities Symposium 268–277

  54. Farnell PW (2000) AICHE 45th Annual Safety in Ammonia Plants and Related Facilities Symposium 173–181

  55. Zeng Z, Natesan K, Rink DL (2007). Dev Mater Resist Metal Dusting. https://doi.org/10.2172/920980

    Article  Google Scholar 

  56. Grabke H (1998) Mater Corros 49(5):303–306

    CAS  Google Scholar 

  57. Holmes T (2016) Nitrogen Syngas 342:19–21

    Google Scholar 

  58. Elkins HJ, Kitchen D, Pinto A (1992) AICHE 37th Annual Safety in Ammonia Plants and Related Facilities Symposium 241–256

  59. Thomsen SG, Han PA, Loock S, Ernst W (2006) AICHE 51st Annual Safety in Ammonia Plants and Related Facilities Symposium 259–266

Download references

Acknowledgements

The previous generations of Billingham based scientists and engineers, who, like Mike Spencer, who have laid foundations for everything that is done today and will be done in the future.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to writing and reviewing of this article.

Corresponding author

Correspondence to M. Carlsson.

Ethics declarations

Conflict of interest

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Approved by Johnson Matthey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fowles, M., Carlsson, M. Steam Reforming of Hydrocarbons for Synthesis Gas Production. Top Catal 64, 856–875 (2021). https://doi.org/10.1007/s11244-021-01496-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01496-z

Keywords

Navigation