Skip to main content
Log in

Photoconductivity properties of silver-doped zinc oxide films

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 09 September 2021

This article has been updated

Abstract

The transient photoconductivity of as-deposited and annealed in air 0.27 at.% silver-doped zinc oxide films (Ag:ZnO) coated on sapphire substrates by e-beam evaporation method was measured in the dark (σd) and under light from a solar simulator (σph) at temperatures 8, 12, and 32 °C. In comparison with as-deposited Ag:ZnO film, the annealed film exhibits lower photoresponse which decreases and becomes slower as the temperature increases from 8 to 32 °C. The ln σd versus 1/T plots of the as-deposited and annealed samples revealed thermally-activated process in the range of 5–60 °C for σd with an activation energy of 1.4 eV and 0.8 eV, respectively. Furthermore, σd and σph were measured in the frequency range of 10–35 × 106 s−1 at room temperature. σd of the as-deposited film is frequency independent, while σd of the annealed film exhibits two different conduction mechanisms; one dominates in the low-frequency region as conduction via delocalized states, and the other is the polaron mechanism, which is activated at higher frequencies (ω > 190 × 103 s−1). The frequency dependences of σph of the as-deposited and annealed films obey the Drude model of conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. JAP 98, 041301–042103 (2005)

    ADS  Google Scholar 

  2. O. Maksimov, Recent advances and novel approaches of p-type doping of zinc oxide. Rev. Adv. Mater. Sci. 24, 26–34 (2010)

    Google Scholar 

  3. P. Sharma, K. Sreenivas, K.V. Rao, Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering. JAP 93, 3963–3970 (2003)

    ADS  Google Scholar 

  4. S. Dhara, P.K. Giri, Stable p-type conductivity and enhanced photoconductivity from nitrogen-doped annealed ZnO thin film. Thin Solid Films 520, 5000–5006 (2012)

    Article  ADS  Google Scholar 

  5. Sh. Guo, J. Li, Z. Du, Investigation on intra-3d-shell transitions in Co-doped ZnO. Appl. Phys. A 121, 645–649 (2015)

    Article  ADS  Google Scholar 

  6. C.S. Prajapati, A. Kushwaha, P.P. Sahay, Optoelectronics and formaldehyde sensing properties of tin-doped ZnO thin films. Appl. Phys. A 113, 651–662 (2013)

    Article  ADS  Google Scholar 

  7. A. Das, P. Guha Roy, A. Dutta, S. Sen, P. Pramanik, D. Das, A. Banerjee, A. Bhattacharyya, Mg and Al co-doping of ZnO thin films: Effect on ultraviolet photoconductivity. Mater. Sci. Semicond. Process. 54, 36–41 (2016)

    Article  Google Scholar 

  8. A. Saaedi1, R. Yousef, F. Jamali-Sheini, A. Khorsand Zak, M. Cheraghizade, M. R. Mahmoudiand, M. A. Baghchesara, A.Sh. Dezaki, XPS studies and photocurrent applications of alkali-metals-doped ZnO nanoparticlesunder visible illumination conditions, Phys. E: Low-Dimens. Syst. Nanostruct. (2015). https://doi.org/10.1016/j.physe.2015.12.002

  9. S.Z. Umbaidilah, N.A.M. Asib, A.N. Afaah, M. Rusop, Z. Khusaimi, A review on the effect of metal doped ZnO nanostructures on ultraviolet photoconductive sensor performance. AIP Conf. Proc. 2151, 020038 (2019). https://doi.org/10.1063/1.5124668

    Article  Google Scholar 

  10. S. Khosravi-Ghandomani, R. Yousefi, N. Jamli-Sheini, M. Huang, Optical and electrical properties of p-type Ag-doped ZnO nanostructures. Ceram. Int. 40, 7957–7963 (2014)

    Article  Google Scholar 

  11. H.S. Kang, B.D. Ahn, J.H. Kim, G.H. Kim, S.H. Lim, H.W. Chang, S.Y. Lee, Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant. Appl. Phys. Lett. 88, 202108–202113 (2006)

    Article  ADS  Google Scholar 

  12. M. Thomas, W. Sun, J. Cui, Mechanism of Ag doping in ZnO nanowires by electrodeposition: experimental and theoretical insights. J. Phys. Chem. 116, 6383–9391 (2012)

    Article  Google Scholar 

  13. W.J. Li, C.Y. Kong, H.B. Ruan, G.P. Qin, G.J. Huang, T.Y. Yang, W.W. Liang, Y.H. Zhao, X.D. Meng, P. Yu, Y.T. Cui, L. Fang, Electrical properties and Raman scattering investigation of Ag doped ZnO thin films. Solid State Commun. 152, 147–150 (2012)

    Article  ADS  Google Scholar 

  14. Z.N. Kayani, A. Usman, H. Nazli, R. Sagheer, S. Riaz, S. Naseem, Dielectric and magnetic properties of dilute magnetic semiconductors Ag-doped ZnO thin films. Appl. Phys. A 126, 559–569 (2020)

    Article  ADS  Google Scholar 

  15. L. Castañeda, C. Torres-Torres, M. Trejo-Valdez, J. Castro-Chacón, G.A. Graciano-Armenta, A.V. Khomenko, Optical and photoconductive properties exhibited by silver doped zinc oxide thin films. J. Nanoelectron. Optoelectron. 8, 267–272 (2013)

    Article  Google Scholar 

  16. Ch. Fu, K.J. Lee, K. Lee, S.S. Yang, Low-intensity ultraviolet detection using a surface acoustic-wave sensor with a Ag doped ZnO nanoparticle film. Smart Mater. Struct. 24, 015010–015018 (2015)

    Article  ADS  Google Scholar 

  17. A.K. Rajan, H.K. Yadav, V. Gupta, M. Tomar, Sol–gel derived Ag-doped ZnO thin film for UV photodetector with enhanced response. J. Mater. Sci. 48, 7994–8002 (2013)

    Article  ADS  Google Scholar 

  18. T. Asar, T. Yavuz, B. Coşkun, A comprehensive investigation on Ag-doped ZnO based photodiodes with nanofibers. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03159-3

    Article  Google Scholar 

  19. F. Xian, K. Miao, X. Bai, Y. Ji, F. Chen, X. Li, Characteraction of Ag-doped ZnO thin film synthesized by sol–gel method and its using in thin film solar cells. Optik 124, 4876–4879 (2013)

    Article  ADS  Google Scholar 

  20. N.R. Aghamalyan, E.A. Kafadaryan, R.K. Hovsepyan, in Trends in Semiconductor Science. ed. by T.B. Elliot (Nova Science Publishers, New York, 2005), p. 81

    Google Scholar 

  21. A. Chelouche, D. Djouadi, H. Merzouk, A. Aksas, Influence of Ag doping on structural and optical properties of ZnO thin films synthesized by the sol–gel technique. Appl. Phys. A 115, 613–616 (2014)

    Article  ADS  Google Scholar 

  22. J.C. Moore, C.V. Thompson, A Phenomenological model for the photocurrent transient relaxation observed in ZnO-based photodetector devices. Sensors 13, 9921–9940 (2013)

    Article  ADS  Google Scholar 

  23. M. Villafuerte, D.J. Zamora, G. Bridoux, J.M. Ferreyra, M. Meyer, S.P. Heluani, Role of defects and their complexes on the dependence of photoconductivity on dark resistivity of single ZnO microwires. JAP 121, 064501–064505 (2017)

    ADS  Google Scholar 

  24. T. Kundu Roy, D. Sanyal, D. Bhowmick, A. Chakrabarti, Temperature dependent resistivity study on zinc oxide and the role of defects. Mater. Sci. Semicond. Process. 16, 332–336 (2013)

    Article  Google Scholar 

  25. J.B. Baxter, Ch.A. Schmuttenmaer, Carrier dynamics in bulk ZnO: II: Transient photoconductivity measured by time-resolved terahertz spectroscopy. Phys. Rev. B 80, 235206–235210 (2009)

    Article  ADS  Google Scholar 

  26. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv Phys. 18, 41–102 (1969)

    Article  ADS  Google Scholar 

  27. Y. Kafadaryan, N. Aghamalyan, A. Arakelyan, S. Petrosyan, G. Badalyan, A. Poghosyan, R. Hovsepyan, Experimental evidence of polarons in silver doped ZnO films. Appl. Phys. A 127, 128–133 (2021)

    Article  ADS  Google Scholar 

  28. M.M. Abdul-Gader, M.A. AL-Basha, K.A. Wishas, Temperature dependence of DC conductivity of as-deposited and annealed selenium films. J. Electron. 85, 21–41 (1998)

    Article  Google Scholar 

  29. G. Sankar Paul, P. Agarwal, Persistent photocurrent and decay studies in CdS nanorods thin films. JAP 106, 103705–103715 (2009)

    ADS  Google Scholar 

  30. J.C. González, G.M. Ribeiro, E.R. Viana, P.A. Fernandes, P.M.P. Salomé, K. Gutiérrez, A. Abelenda, F.M. Matinaga, J.P. Leitão, A.F. da Cunha, Hopping conduction and persistent photoconductivity in Cu2ZnSnS4 thin films. J. Phys. D: Appl. Phys. 46, 155107–155115 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by RAU of the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kafadaryan.

Ethics declarations

Conflict of interest

No conflict of interest in this paper is declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hovsepyan, R., Ayvazyan, O., Aghamalyan, N. et al. Photoconductivity properties of silver-doped zinc oxide films. Appl. Phys. A 127, 727 (2021). https://doi.org/10.1007/s00339-021-04806-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04806-0

Keywords

Navigation