Skip to main content
Log in

Strengthening Mechanisms of 15 vol.% Al2O3 Nanoparticles Reinforced Aluminum Matrix Nanocomposite Fabricated by High Energy Ball Milling and Vacuum Hot Pressing

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Increasing nanoparticle volume fraction has been proved to be effective in improving the strength of nanoparticle reinforced Al matrix nanocomposite. However, the underlying mechanisms for the ultrahigh strength of those nanocomposites with high volume fraction (> 10 vol.%) nanoparticles are short of experimental research. In this study, the strengthening mechanisms of high strength Al matrix nanocomposite reinforced with 15 vol.% Al2O3 nanoparticles were investigated experimentally and analyzed theoretically. The results show that the thermal mismatch induced geometrically necessary dislocations exhibit a negligible strengthening effect, because of their low density in the nanocomposite that is contradiction to the conventional dislocation punch model. Orowan mechanism makes a major strengthening contribution in view of the deformation process dominated by nanoparticle-dislocation interactions due to the extreme pinning effect of nanoparticles on dislocation motion. In addition, the several mechanisms including grain boundary strengthening, load transfer strengthening, and elastic modulus mismatch induced dislocation strengthening contribute to the strength increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Geng, F. Qiu, Q.C. Jiang, Adv. Eng. Mater. 20, 1701089 (2018)

    Article  Google Scholar 

  2. Z.H. Zhang, T. Topping, Y. Li, R. Vogt, Y.Z. Zhou, C. Haines, J. Paras, D. Kapoor, J.M. Schoenung, E.J. Lavernia, Scr. Mater. 65, 652 (2011)

    Article  CAS  Google Scholar 

  3. M.J. Li, K.K. Ma, L. Jiang, H. Yang, E.J. Lavernia, L.M. Zhang, J.M. Schoenung, Mater. Sci. Eng. A 656, 241 (2016)

    Article  CAS  Google Scholar 

  4. X. Yao, Z. Zhang, Y.F. Zheng, C. Kong, M.Z. Quadir, J.M. Liang, Y.H. Chen, P. Munroe, D.L. Zhang, J. Mater. Sci. Technol. 33, 1023 (2017)

    Article  CAS  Google Scholar 

  5. D. Poirier, R.A.L. Drew, M.L. Trudeau, R. Gauvin, Mater. Sci. Eng. A 527, 7605 (2010)

    Article  Google Scholar 

  6. J. Hemanth, Mater. Sci. Eng. A 507, 110 (2009)

    Article  Google Scholar 

  7. A. Sanaty-Zadeh, Mater. Sci. Eng. A 531, 112 (2012)

    Article  CAS  Google Scholar 

  8. A. Mazahery, H. Abdizadeh, H.R. Baharvandi, Mater. Sci. Eng. A 518, 61 (2009)

    Article  Google Scholar 

  9. Y.C. Kang, S.L. Chan, Mater. Chem. Phys. 85, 438 (2004)

    Article  CAS  Google Scholar 

  10. H. Su, W.L. Gao, Z.H. Feng, Z. Lu, Mater. Des. 36, 590 (2012)

    Article  CAS  Google Scholar 

  11. A.B. Li, G.S. Wang, X.X. Zhang, Y.Q. Li, X. Gao, H. Sun, M.F. Qian, X.P. Cui, L. Geng, G.H. Fan, Mater. Sci. Eng. A 745, 10 (2019)

    Article  CAS  Google Scholar 

  12. J.L. Liu, X.Y. Huang, K. Zhao, Z.W. Zhu, X.X. Zhu, L.N. An, J. Alloys Compd. 797, 1367 (2019)

    Article  CAS  Google Scholar 

  13. L.N. An, J. Qu, J.S. Luo, Y. Fan, L.G. Zhang, J.L. Liu, C.Y. Xu, P.J. Blau, J. Mater. Res. 26, 2479 (2011)

    Article  CAS  Google Scholar 

  14. L.Y. Chen, J.Y. Peng, J.Q. Xu, H. Choi, X.C. Li, Scr. Mater. 69, 634 (2013)

    Article  CAS  Google Scholar 

  15. J.F. Guo, J. Liu, C.N. Sun, S. Maleksaeedi, G. Bi, M.J. Tan, J. Wei, Mater. Sci. Eng. A 602, 143 (2014)

    Article  CAS  Google Scholar 

  16. J. Liu, Z. Chen, F.G. Zhang, G. Ji, M.L. Wang, Y. Ma, V. Ji, S.Y. Zhong, Y. Wu, H.W. Wang, Mater. Res. Lett. 6, 406 (2018)

    Article  Google Scholar 

  17. Z. Zhang, D.L. Chen, Scr. Mater. 54, 1321 (2006)

    Article  CAS  Google Scholar 

  18. T.C. Lin, C.Z. Cao, M. Sokoluk, L. Jiang, X. Wang, J.M. Schoenung, E.J. Lavernia, X.C. Li, Nat. Commun. 10, 4124 (2019)

    Article  Google Scholar 

  19. S. Scudino, G. Liu, K.G. Prashanth, B. Bartusch, K.B. Surreddi, B.S. Murty, J. Eckert, Acta Mater. 57, 2029 (2009)

    Article  CAS  Google Scholar 

  20. S. Scudino, G. Liu, M. Sakaliyska, K.B. Surreddi, J. Eckert, Acta Mater. 57, 4529 (2009)

    Article  CAS  Google Scholar 

  21. M. Yuan, D.C. Zhang, C.G. Tan, Z.C. Luo, Y.F. Mao, J.G. Lin, Mater. Sci. Eng. A 590, 301 (2014)

    Article  CAS  Google Scholar 

  22. C.S. Marchi, F. Cao, M. Kouzeli, A. Mortensen, Mater. Sci. Eng. A 337, 202 (2002)

    Article  Google Scholar 

  23. M. Rahimian, N. Parvin, N. Ehsani, Mater. Sci. Eng. A 527, 1031 (2010)

    Article  Google Scholar 

  24. M. Kouzeli, D.C. Dunand, Acta Mater. 51, 6105 (2003)

    Article  CAS  Google Scholar 

  25. T. Sakamoto, S. Kukeya, H. Ohfuji, Mater. Sci. Eng. A 748, 428 (2019)

    Article  CAS  Google Scholar 

  26. M.R. Mattli, P.R. Matli, A. Shakoor, A.M.A. Mohamed, Ceramics 2, 126 (2019)

    Article  CAS  Google Scholar 

  27. B.Y. Cao, S.P. Joshi, K.T. Ramesh, Scr. Mater. 60, 619 (2009)

    Article  CAS  Google Scholar 

  28. R.J. Arsenault, N. Shi, Mater. Sci. Eng. 81, 175 (1986)

    Article  CAS  Google Scholar 

  29. D. Dunand, A. Mortensen, Mater. Sci. Eng. A 135, 179 (1991)

    Article  Google Scholar 

  30. A.M. Redsten, E.M. Klier, A.M. Brown, D.C. Dunand, Mater. Sci. Eng. A 201, 88 (1995)

    Article  Google Scholar 

  31. L. Jiang, H. Yang, J.K. Yee, X. Mo, T. Topping, E.J. Lavernia, J.M. Schoenung, Acta Mater. 103, 128 (2016)

    Article  CAS  Google Scholar 

  32. L.H. Dai, Z. Ling, Y.L. Bai, Compos. Sci. Technol. 61, 1057 (2001)

    Article  CAS  Google Scholar 

  33. Y.F. Liu, F. Wang, Y. Cao, J.F. Nie, H. Zhou, H.B. Yang, X.F. Liu, X.H. An, X.Z. Liao, Y.H. Zhao, Y.T. Zhu, Scr. Mater. 162, 316 (2019)

    Article  CAS  Google Scholar 

  34. A. Kelly, R.B. Nicholson, Strengthening Methods in Crystals (Elsevier, Amsterdam, 1971), p. 9

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Research and Development Project in Sichuan Province (Grant No. 2020YFG0140), the Fundamental Research Funds for the Central Universities (Grant No. 2682020CX47), and the China Postdoctoral Science Foundation (Grant No. 2020M683349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Duan, Z., Liu, J. et al. Strengthening Mechanisms of 15 vol.% Al2O3 Nanoparticles Reinforced Aluminum Matrix Nanocomposite Fabricated by High Energy Ball Milling and Vacuum Hot Pressing. Acta Metall. Sin. (Engl. Lett.) 35, 915–921 (2022). https://doi.org/10.1007/s40195-021-01306-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01306-1

Keywords

Navigation