Skip to main content

Advertisement

Log in

Involvement of 4-hydroxy-2-nonenal in the pathogenesis of pulmonary fibrosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Pulmonary fibrosis is a chronic progressive disease with high incidence, prevalence, and mortality rates worldwide. It is characterized by excessive accumulation of extracellular matrix in the lung parenchyma. The cellular and molecular mechanisms involved in its pathogenesis are complex, and some are still unknown. Several studies indicate that oxidative stress, characterized by overproduction of 4-hydroxy-2-nonenal (4-HNE), is an important player in pulmonary fibrosis. 4-HNE is a highly reactive compound derived from polyunsaturated fatty acids that can react with proteins, phospholipids, and nucleic acids. Thus, many of the altered cellular mechanisms that contribute to this disease can be explained by the participation of 4-HNE. Here, we summarize the current knowledge on the molecular states and signal transduction pathways that contribute to the pathogenesis of pulmonary fibrosis. Furthermore, we describe the participation of 4-HNE in various mechanisms involved in pulmonary fibrosis development, with a focus on the cell populations involved in the initiation, development, and maintenance of the fibrotic process, mainly alveolar cells, endothelial cells, macrophages, and inflammatory cells. Due to its characteristic activity as a second messenger, 4-HNE, in addition to being a consequence of oxidative stress, can support maintenance of the inflammatory and fibrotic process by spreading the effects of reactive oxygen species (ROS). Thus, regulation of 4-HNE levels could be a viable strategy to reduce its effects on the mechanisms involved in pulmonary fibrosis development.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, Behr J, Cottin V, Danoff SK, Morell F, Flaherty KR, Wells A, Martinez FJ, Azuma A, Bice TJ, Bouros D, Brown KK, Collard HR, Duggal A, Galvin L, Inoue Y, Jenkins RG, Johkoh T, Kazerooni EA, Kitaichi M, Knight SL, Mansour G, Nicholson AG, Pipavath SNJ, Buendía-Roldán I, Selman M, Travis WD, Walsh SLF, Wilson KC (2018) Diagnosis of idiopathic pulmonary fibrosis an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 198(5):e44–e68. https://doi.org/10.1164/rccm.201807-1255ST

    Article  PubMed  Google Scholar 

  2. Verleden SE, Tanabe N, McDonough JE, Vasilescu DM, Xu F, Wuyts WA, Piloni D, De Sadeleer L, Willems S, Mai C, Hostens J, Cooper JD, Verbeken EK, Verschakelen J, Galban CJ, Van Raemdonck DE, Colby TV, Decramer M, Verleden GM, Kaminski N, Hackett T-L, Vanaudenaerde BM, Hogg JC (2020) Small airways pathology in idiopathic pulmonary fibrosis: a retrospective cohort study. Lancet Respir Med. https://doi.org/10.1016/s2213-2600(19)30356-x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Harari S, Davì M, Biffi A, Caminati A, Ghirardini A, Lovato V, Cricelli C, Lapi F (2019) Epidemiology of idiopathic pulmonary fibrosis: a population-based study in primary care. Intern Emerg Med 15(3):437–445. https://doi.org/10.1007/s11739-019-02195-0

    Article  PubMed  Google Scholar 

  4. Hutchinson J, Fogarty A, Hubbard R, McKeever T (2015) Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J 46(3):795–806. https://doi.org/10.1183/09031936.00185114

    Article  PubMed  Google Scholar 

  5. Strongman H, Kausar I, Maher TM (2018) Incidence, prevalence, and survival of patients with idiopathic pulmonary fibrosis in the UK. Adv Ther 35(5):724–736. https://doi.org/10.1007/s12325-018-0693-1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hutchinson JP, McKeever TM, Fogarty AW, Navaratnam V, Hubbard RB (2014) Increasing global mortality from idiopathic pulmonary fibrosis in the twenty-first century. Ann Am Thorac Soc 11(8):1176–1185. https://doi.org/10.1513/AnnalsATS.201404-145OC

    Article  PubMed  Google Scholar 

  7. Seibold MA, Wise AL, Speer MC, Steele MP, Brown KK, Loyd JE, Fingerlin TE, Zhang W, Gudmundsson G, Groshong SD, Evans CM, Garantziotis S, Adler KB, Dickey BF, du Bois RM, Yang IV, Herron A, Kervitsky D, Talbert JL, Markin C, Park J, Crews AL, Slifer SH, Auerbach S, Roy MG, Lin J, Hennessy CE, Schwarz MI, Schwartz DA (2011) A common MUC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med 364(16):1503–1512. https://doi.org/10.1056/NEJMoa1013660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee J, Reddy R, Barsky L, Scholes J, Chen H, Shi W, Driscoll B (2009) Lung alveolar integrity is compromised by telomere shortening in telomerase-null mice. Am J Physiol-Lung Cell Mol Physiol 296(1):L57–L70. https://doi.org/10.1152/ajplung.90411.2008

    Article  CAS  PubMed  Google Scholar 

  9. Sheng G, Chen P, Wei Y, Yue H, Chu J, Zhao J, Wang Y, Zhang W, Zhang H-L (2019) Viral infection increases the risk of idiopathic pulmonary fibrosis. Chest. https://doi.org/10.1016/j.chest.2019.10.032

    Article  PubMed  Google Scholar 

  10. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier J-F, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE, Kondoh Y, Myers J, Müller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF, Griss BS, Protzko SL, Schünemann HJ (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183(6):788–824. https://doi.org/10.1164/rccm.2009-040GL

    Article  PubMed  PubMed Central  Google Scholar 

  11. Veith C, Drent M, Bast A, van Schooten FJ, Boots AW (2017) The disturbed redox-balance in pulmonary fibrosis is modulated by the plant flavonoid quercetin. Toxicol Appl Pharmacol 336:40–48. https://doi.org/10.1016/j.taap.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  12. Tsubouchi K, Araya J, Yoshida M, Sakamoto T, Koumura T, Minagawa S, Hara H, Hosaka Y, Ichikawa A, Saito N, Kadota T, Kurita Y, Kobayashi K, Ito S, Fujita Y, Utsumi H, Hashimoto M, Wakui H, Numata T, Kaneko Y, Mori S, Asano H, Matsudaira H, Ohtsuka T, Nakayama K, Nakanishi Y, Imai H, Kuwano K (2019) Involvement of GPx4-regulated lipid peroxidation in idiopathic pulmonary fibrosis pathogenesis. J Immunol 203(8):2076–2087. https://doi.org/10.4049/jimmunol.1801232

    Article  CAS  PubMed  Google Scholar 

  13. Galam L, Failla A, Soundararajan R, Lockey RF, Kolliputi N (2015) 4-Hydroxynonenal regulates mitochondrial function in human small airway epithelial cells. Oncotarget 6(39):41508–41521. https://doi.org/10.18632/oncotarget.6131

    Article  PubMed  PubMed Central  Google Scholar 

  14. Prasad S, Hogaboam CM, Jarai G (2014) Deficient repair response of IPF fibroblasts in a co-culture model of epithelial injury and repair. Fibrogenesis Tissue Repair 7:7. https://doi.org/10.1186/1755-1536-7-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Borensztajn K, Crestani B, Kolb M (2013) Idiopathic pulmonary fibrosis: from epithelial injury to biomarkers–insights from the bench side. Respiration 86(6):441–452. https://doi.org/10.1159/000357598

    Article  CAS  PubMed  Google Scholar 

  16. Wuyts WA, Agostini C, Antoniou KM, Bouros D, Chambers RC, Cottin V, Egan JJ, Lambrecht BN, Lories R, Parfrey H, Prasse A, Robalo-Cordeiro C, Verbeken E, Verschakelen JA, Wells AU, Verleden GM (2013) The pathogenesis of pulmonary fibrosis: a moving target. Eur Respir J 41(5):1207–1218. https://doi.org/10.1183/09031936.00073012

    Article  CAS  PubMed  Google Scholar 

  17. Ohta H, Chiba S, Ebina M, Furuse M, Nukiwa T (2012) Altered expression of tight junction molecules in alveolar septa in lung injury and fibrosis. Am J PhysiolLung Cell Mol Physiol 302(2):L193–L205. https://doi.org/10.1152/ajplung.00349.2010

    Article  CAS  Google Scholar 

  18. Camelo A, Dunmore R, Sleeman MA, Clarke DL (2014) The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Front Pharmacol 4:173. https://doi.org/10.3389/fphar.2013.00173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Agostini C, Gurrieri C (2006) Chemokine/cytokine cocktail in idiopathic pulmonary fibrosis. Proc Am Thorac Soc 3(4):357–363. https://doi.org/10.1513/pats.200601-010TK

    Article  CAS  PubMed  Google Scholar 

  20. Pechkovsky DV, Prasse A, Kollert F, Engel KM, Dentler J, Luttmann W, Friedrich K, Muller-Quernheim J, Zissel G (2010) Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction. Clin Immunol 137(1):89–101. https://doi.org/10.1016/j.clim.2010.06.017

    Article  CAS  PubMed  Google Scholar 

  21. Zhu L, Fu X, Chen X, Han X, Dong P (2017) M2 macrophages induce EMT through the TGF-β/Smad2 signaling pathway. Cell Biol Int 41(9):960–968. https://doi.org/10.1002/cbin.10788

    Article  CAS  PubMed  Google Scholar 

  22. Park YS, Park CM, Lee HJ, Goo JM, Chung DH, Lee S-M, Yim J-J, Kim YW, Han SK, Yoo C-G (2013) Clinical implication of protease-activated receptor-2 in idiopathic pulmonary fibrosis. Respir Med 107(2):256–262. https://doi.org/10.1016/j.rmed.2012.10.011

    Article  PubMed  Google Scholar 

  23. Wygrecka M, Kwapiszewska G, Jablonska E, Sv G, Henneke I, Zakrzewicz D, Guenther A, Preissner KT, Markart P (2011) Role of protease-activated receptor-2 in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 183(12):1703–1714. https://doi.org/10.1164/rccm.201009-1479OC

    Article  CAS  PubMed  Google Scholar 

  24. Barbas-Filho JV (2001) Evidence of type II pneumocyte apoptosis in the pathogenesis of idiopathic pulmonary fibrosis (IFP)/usual interstitial pneumonia (UIP). J Clin Pathol 54(2):132–138. https://doi.org/10.1136/jcp.54.2.132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hagimoto N, Kuwano K, Inoshima I, Yoshimi M, Nakamura N, Fujita M, Maeyama T, Hara N (2002) TGF-β1 as an enhancer of fas-mediated apoptosis of lung epithelial cells. J Immunol 168(12):6470–6478. https://doi.org/10.4049/jimmunol.168.12.6470

    Article  CAS  PubMed  Google Scholar 

  26. Liu P, Miao K, Zhang L, Mou Y, Xu Y, Xiong W, Yu J, Wang Y (2020) Curdione ameliorates bleomycin-induced pulmonary fibrosis by repressing TGF-β-induced fibroblast to myofibroblast differentiation. Respir Res. https://doi.org/10.1186/s12931-020-1300-y

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marmai C, Sutherland RE, Kim KK, Dolganov GM, Fang X, Kim SS, Jiang S, Golden JA, Hoopes CW, Matthay MA, Chapman HA, Wolters PJ (2011) Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis. A J Physiol-Lung Cell Mol Physiol 301(1):L71–L78. https://doi.org/10.1152/ajplung.00212.2010

    Article  CAS  Google Scholar 

  28. Kanemaru R, Takahashi F, Kato M, Mitsuishi Y, Tajima K, Ihara H, Hidayat M, Wirawan A, Koinuma Y, Hayakawa D, Yagishita S, Ko R, Sato T, Harada N, Kodama Y, Nurwidya F, Sasaki S, Niwa SI, Takahashi K (2018) Dasatinib suppresses TGFbeta-mediated epithelial-mesenchymal transition in alveolar epithelial cells and inhibits pulmonary fibrosis. Lung 196(5):531–541. https://doi.org/10.1007/s00408-018-0134-6

    Article  CAS  PubMed  Google Scholar 

  29. Kasai H, Allen JT, Mason RM, Kamimura T, Zhang Z (2005) TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res. https://doi.org/10.1186/1465-9921-6-56

    Article  PubMed  PubMed Central  Google Scholar 

  30. Walsh SM, Worrell JC, Fabre A, Hinz B, Kane R, Keane MP (2018) Novel differences in gene expression and functional capabilities of myofibroblast populations in idiopathic pulmonary fibrosis. Am J Physiol-Lung Cell Mol Physiol 315(5):L697–L710. https://doi.org/10.1152/ajplung.00543.2017

    Article  PubMed  Google Scholar 

  31. Moore BB, Murray L, Das A, Wilke CA, Herrygers AB, Toews GB (2006) The Role of CCL12 in the Recruitment of Fibrocytes and Lung Fibrosis. Am J Respir Cell Mol Biol 35(2):175–181. https://doi.org/10.1165/rcmb.2005-0239OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen X, Shi C, Meng X, Zhang K, Li X, Wang C, Xiang Z, Hu K, Han X (2016) Inhibition of Wnt/β-catenin signaling suppresses bleomycin-induced pulmonary fibrosis by attenuating the expression of TGF-β1 and FGF-2. Exp Mol Pathol 101(1):22–30. https://doi.org/10.1016/j.yexmp.2016.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao J, Shi W, Wang Y-L, Chen H, Bringas P, Datto MB, Frederick JP, Wang X-F, Warburton D (2002) Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol-Lung Cell Mol Physiol 282(3):L585–L593. https://doi.org/10.1152/ajplung.00151.2001

    Article  CAS  PubMed  Google Scholar 

  34. Todd JL, Vinisko R, Liu Y, Neely ML, Overton R, Flaherty KR, Noth I, Newby LK, Lasky JA, Olman MA, Hesslinger C, Leonard TB, Palmer SM, Belperio JA (2020) Circulating matrix metalloproteinases and tissue metalloproteinase inhibitors in patients with idiopathic pulmonary fibrosis in the multicenter IPF-PRO Registry cohort. BMC Pulmonary Med. https://doi.org/10.1186/s12890-020-1103-4

    Article  Google Scholar 

  35. Ramos C, Montaño M, Garcı́a-Alvarez J, Ruiz Vc, Uhal BD, Selman M, Pardo A, (2001) Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression. Am J Respir Cell Mol Biol 24(5):591–598. https://doi.org/10.1165/ajrcmb.24.5.4333

    Article  CAS  PubMed  Google Scholar 

  36. Eickelberg O, Köhler E, Reichenberger F, Bertschin S, Woodtli T, Erne P, Perruchoud AP, Roth M (1999) Extracellular matrix deposition by primary human lung fibroblasts in response to TGF-β1 and TGF-β3. Am J Physiol-Lung Cell Mol Physiol 276(5):L814–L824. https://doi.org/10.1152/ajplung.1999.276.5.L814

    Article  CAS  Google Scholar 

  37. Parker MW, Rossi D, Peterson M, Smith K, Sikstrom K, White ES, Connett JE, Henke CA, Larsson O, Bitterman PB (2014) Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest 124(4):1622–1635. https://doi.org/10.1172/JCI71386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fois AG, Paliogiannis P, Sotgia S, Mangoni AA, Zinellu E, Pirina P, Carru C, Zinellu A (2018) Evaluation of oxidative stress biomarkers in idiopathic pulmonary fibrosis and therapeutic applications: a systematic review. Respir Res 19(1):51. https://doi.org/10.1186/s12931-018-0754-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guéraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, Jouanin I, Siems W, Uchida K (2010) Chemistry and biochemistry of lipid peroxidation products. Free Radical Res 44(10):1098–1124. https://doi.org/10.3109/10715762.2010.498477

    Article  CAS  Google Scholar 

  40. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biol Med 11(1):81–128. https://doi.org/10.1016/0891-5849(91)90192-6

    Article  CAS  Google Scholar 

  41. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:1–31. https://doi.org/10.1155/2014/360438

    Article  CAS  Google Scholar 

  42. Fois AG, Paliogiannis P, Sotgia S, Mangoni AA, Zinellu E, Pirina P, Carru C, Zinellu A (2018) Evaluation of oxidative stress biomarkers in idiopathic pulmonary fibrosis and therapeutic applications: a systematic review. Respir Res. https://doi.org/10.1186/s12931-018-0754-7

    Article  PubMed  PubMed Central  Google Scholar 

  43. Paliogiannis P, Fois AG, Collu C, Bandinu A, Zinellu E, Carru C, Pirina P, Mangoni AA, Zinellu A (2018) Oxidative stress-linked biomarkers in idiopathic pulmonary fibrosis: a systematic review and meta-analysis. Biomark Med 12(10):1175–1184. https://doi.org/10.2217/bmm-2018-0108

    Article  CAS  PubMed  Google Scholar 

  44. Kanoh S, Kobayashi H, Motoyoshi K (2005) Exhaled Ethane. Chest 128(4):2387–2392. https://doi.org/10.1378/chest.128.4.2387

    Article  CAS  PubMed  Google Scholar 

  45. Montuschi P, Toni GC, Paredi P, Pantelidis P, du Bois RM, Kharitonov SA, Barnes PJ (1998) 8-Isoprostane as a Biomarker of Oxidative Stress in Interstitial Lung Diseases. Am J Respir Crit Care Med 158(5):1524–1527. https://doi.org/10.1164/ajrccm.158.5.9803102

    Article  CAS  PubMed  Google Scholar 

  46. Tsukagoshi H (2002) 4-Hydroxy-2-nonenal enhances fibronectin production by IMR-90 human lung fibroblasts partly via activation of epidermal growth factor receptor-linked extracellular signal-regulated kinase p44/42 pathway. Toxicol Appl Pharmacol 184(3):127–135. https://doi.org/10.1006/taap.2002.9514

    Article  CAS  PubMed  Google Scholar 

  47. Gungor H, Ekici M, Onder Karayigit M, Turgut NH, Kara H, Arslanbas E (2020) Zingerone ameliorates oxidative stress and inflammation in bleomycin-induced pulmonary fibrosis: modulation of the expression of TGF-β1 and iNOS. Naunyn Schmiedebergs Arch Pharmacol 393(9):1659–1670. https://doi.org/10.1007/s00210-020-01881-7

    Article  CAS  PubMed  Google Scholar 

  48. Yan B, Ma Z, Shi S, Hu Y, Ma T, Rong G, Yang J (2017) Sulforaphane prevents bleomycin-induced pulmonary fibrosis in mice by inhibiting oxidative stress via nuclear factor erythroid 2-related factor-2 activation. Mol Med Rep 15(6):4005–4014. https://doi.org/10.3892/mmr.2017.6546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Peng L, Wen L, Shi Q, Gao F, Huang B, Wang C (2021) Chelerythrine ameliorates pulmonary fibrosis via activating the Nrf2/ARE signaling pathway. Cell Biochem Biophys 79(2):337–347. https://doi.org/10.1007/s12013-021-00967-0

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Z-q, Shao B, Han G-z, Liu G-y, Zhang C-z, Lin L (2019) Location and dynamic changes of inflammation, fibrosis, and expression levels of related genes in SiO<sub>2</sub>-induced pulmonary fibrosis in rats <i>in vivo</i>. J Toxicol Pathol 32(4):253–260. https://doi.org/10.1293/tox.2019-0024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Candan F, Alagözlü H (2016) Captopril inhibits the pulmonary toxicity of paraquat in rats. Hum Exp Toxicol 20(12):637–641. https://doi.org/10.1191/096032701718890540

    Article  Google Scholar 

  52. Pourgholamhossein F, Sharififar F, Rasooli R, Pourgholi L, Nakhaeipour F, Samareh-Fekri H, Iranpour M, Mandegary A (2016) Thymoquinone effectively alleviates lung fibrosis induced by paraquat herbicide through down-regulation of pro-fibrotic genes and inhibition of oxidative stress. Environ Toxicol Pharmacol 45:340–345. https://doi.org/10.1016/j.etap.2016.06.019

    Article  CAS  PubMed  Google Scholar 

  53. Schaur RJ (2003) Basic aspects of the biochemical reactivity of 4-hydroxynonenal. Mol Aspects Med 24(4–5):149–159. https://doi.org/10.1016/s0098-2997(03)00009-8

    Article  CAS  PubMed  Google Scholar 

  54. Doorn JA, Petersen DR (2002) Covalent Modification of Amino Acid Nucleophiles by the Lipid Peroxidation Products 4-Hydroxy-2-nonenal and 4-Oxo-2-nonenal†. Chem Res Toxicol 15(11):1445–1450. https://doi.org/10.1021/tx025590o

    Article  CAS  PubMed  Google Scholar 

  55. Usatyuk PV, Natarajan V (2004) Role of mitogen-activated protein kinases in 4-hydroxy-2-nonenal-induced actin remodeling and barrier function in endothelial cells. J Biol Chem 279(12):11789–11797. https://doi.org/10.1074/jbc.M311184200

    Article  CAS  PubMed  Google Scholar 

  56. Dalleau S, Baradat M, Guéraud F, Huc L (2013) Cell death and diseases related to oxidative stress:4-hydroxynonenal (HNE) in the balance. Cell Death Differ 20(12):1615–1630. https://doi.org/10.1038/cdd.2013.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wacker M, Wanek P, Eder E (2001) Detection of 1, N2-propanodeoxyguanosine adducts of trans-4-hydroxy-2-nonenal after gavage of trans-4-hydroxy-2-nonenal or induction of lipid peroxidation with carbon tetrachloride in F344 rats. Chem Biol Interact 137(3):269–283. https://doi.org/10.1016/s0009-2797(01)00259-9

    Article  CAS  PubMed  Google Scholar 

  58. Krokan H, Grafstrom RC, Sundqvist K, Esterbauer H, Harris CC (1985) Cytotoxicity, thiol depletion and inhibition of O6-methylguanine-DNA methyltransferase by various aldehydes in cultured human bronchial fibroblasts. Carcinogenesis 6(12):1755–1759. https://doi.org/10.1093/carcin/6.12.1755

    Article  CAS  PubMed  Google Scholar 

  59. Jovanović O, Škulj S, Pohl EE, Vazdar M (2019) Covalent modification of phosphatidylethanolamine by 4-hydroxy-2-nonenal increases sodium permeability across phospholipid bilayer membranes. Free Radical Biol Med 143:433–440. https://doi.org/10.1016/j.freeradbiomed.2019.08.027

    Article  CAS  Google Scholar 

  60. Li L, Hamilton JRF, Kirichenko A, Holian A (1996) 4-Hydroxynonenal-induced cell death in murine alveolar macrophages. Toxicol Appl Pharmacol 139(1):135–143. https://doi.org/10.1006/taap.1996.0152

    Article  CAS  PubMed  Google Scholar 

  61. Xiao M, Zhong H, Xia L, Tao Y, Yin H (2017) Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radical Biol Med 111:316–327. https://doi.org/10.1016/j.freeradbiomed.2017.04.363

    Article  CAS  Google Scholar 

  62. Azzu V, Parker N, Brand Martin D (2008) High membrane potential promotes alkenal-induced mitochondrial uncoupling and influences adenine nucleotide translocase conformation. Biochemical Journal 413(2):323–332. https://doi.org/10.1042/bj20080321

    Article  CAS  PubMed  Google Scholar 

  63. Artaud-Macari E, Goven D, Brayer S, Hamimi A, Besnard V, Marchal-Somme J, Ali ZE, Crestani B, Kerdine-Römer S, Boutten A, Bonay M (2013) Nuclear factor erythroid 2-related factor 2 nuclear translocation induces myofibroblastic dedifferentiation in idiopathic pulmonary fibrosis. Antioxid Redox Signal 18(1):66–79. https://doi.org/10.1089/ars.2011.4240

    Article  CAS  PubMed  Google Scholar 

  64. Rainey RP, Gillman IG, Shi X, Cheng T, Stinson A, Gietl D, Albino AP (2009) Fluorescent detection of lipid peroxidation derived protein adducts upon in-vitro cigarette smoke exposure. Toxicol Mech Methods 19(6–7):401–409. https://doi.org/10.1080/15376510903104224

    Article  CAS  PubMed  Google Scholar 

  65. Andreoli R, Manini P, Corradi M, Mutti A, Niessen WMA (2003) Determination of patterns of biologically relevant aldehydes in exhaled breath condensate of healthy subjects by liquid chromatography/atmospheric chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 17(7):637–645. https://doi.org/10.1002/rcm.960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee Y-H, Seo D-S, Lee MJ, Cha H-G (2019) Immunohistochemical characterization of oxidative stress in the lungs of rats exposed to the humidifier disinfectant polyhexamethylene guanidine hydrochloride. J Toxicol Pathol 32(4):311–317. https://doi.org/10.1293/tox.2019-0049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rahman I, van Schadewijk AAM, Crowther AJL, Hiemstra PS, Stolk J, MacNee W, De Boer WI (2002) 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166(4):490–495. https://doi.org/10.1164/rccm.2110101

    Article  PubMed  Google Scholar 

  68. Aksu N, Samadi A, Yalçınkaya A, Çetin T, Eser B, Lay İ, Öziş TN, Öztaş Y, Sabuncuoğlu S (2020) Evaluation of oxysterol levels of patients with silicosis by LC–MS/MS method. Mol Cell Biochem 467(1–2):117–125. https://doi.org/10.1007/s11010-020-03706-w

    Article  CAS  PubMed  Google Scholar 

  69. PelclovÁ D, FenclovÁ Z, SyslovÁ K, VlČKovÁ t, LebedovÁ Jk, Pecha O, BĚLÁČEk J, NavrÁTil T, Kuzma M, KaČEr P, (2011) Oxidative stress markers in exhaled breath condensate in lung fibroses are not significantly affected by systemic diseases. Ind Health 49(6):746–754. https://doi.org/10.2486/indhealth.MS1237

    Article  PubMed  Google Scholar 

  70. Kurita Y, Araya J, Minagawa S, Hara H, Ichikawa A, Saito N, Kadota T, Tsubouchi K, Sato N, Yoshida M, Kobayashi K, Ito S, Fujita Y, Utsumi H, Yanagisawa H, Hashimoto M, Wakui H, Yoshii Y, Ishikawa T, Numata T, Kaneko Y, Asano H, Yamashita M, Odaka M, Morikawa T, Nakayama K, Kuwano K (2017) Pirfenidone inhibits myofibroblast differentiation and lung fibrosis development during insufficient mitophagy. Respir Res. https://doi.org/10.1186/s12931-017-0600-3

    Article  PubMed  PubMed Central  Google Scholar 

  71. Liu R-M, Vayalil PK, Ballinger C, Dickinson DA, Huang W-T, Wang S, Kavanagh TJ, Matthews QL, Postlethwait EM (2012) Transforming growth factor β suppresses glutamate–cysteine ligase gene expression and induces oxidative stress in a lung fibrosis model. Free Radical Biol Med 53(3):554–563. https://doi.org/10.1016/j.freeradbiomed.2012.05.016

    Article  CAS  Google Scholar 

  72. Kurisaki E, Hiraiwa K (2009) Western blot analysis for 4-hydroxy-2-nonenal (HNE)-modified proteins in paraquat-treated mice. Leg Med 11:S431–S433. https://doi.org/10.1016/j.legalmed.2009.01.082

    Article  Google Scholar 

  73. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku B-K, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol-Lung Cell Mol Physiol 289(5):L698–L708. https://doi.org/10.1152/ajplung.00084.2005

    Article  CAS  PubMed  Google Scholar 

  74. Zhang H, Forman HJ (2017) Signaling by 4-hydroxy-2-nonenal: exposure protocols, target selectivity and degradation. Arch Biochem Biophys 617:145–154. https://doi.org/10.1016/j.abb.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  75. Moretto N, Facchinetti F, Southworth T, Civelli M, Singh D, Patacchini R (2009) α, β-Unsaturated aldehydes contained in cigarette smoke elicit IL-8 release in pulmonary cells through mitogen-activated protein kinases. Am J Physiol-Lung Cell Mol Physiol 296(5):L839–L848. https://doi.org/10.1152/ajplung.90570.2008

    Article  CAS  PubMed  Google Scholar 

  76. Hamilton RF, Li L, Eschenbacher WL, Szweda L, Holian A (1998) Potential involvement of 4-hydroxynonenal in the response of human lung cells to ozone. Am J Physiol-Lung Cell Mol Physiol 274(1):L8–L16. https://doi.org/10.1152/ajplung.1998.274.1.L8

    Article  CAS  Google Scholar 

  77. Yoshino K, Sano M, Hagiwara M, Fujita M, Tomita I (1993) Accumulation of (E)-4-Hydroxy-2-nonenal and n-hexanal, degradation products of lipid peroxides, in mouse lung and liver. Biol Pharm Bull 16(1):84–86. https://doi.org/10.1248/bpb.16.84

    Article  CAS  PubMed  Google Scholar 

  78. Li D, Ellis EM (2014) 4-Hydroxynonenal induces an increase in expression of receptor for activating C kinase 1 (RACK1) in Chinese hamster V79–4 lung cells. Chem Biol Interact 213:13–20. https://doi.org/10.1016/j.cbi.2014.01.020

    Article  CAS  PubMed  Google Scholar 

  79. Volpi G, Facchinetti F, Moretto N, Civelli M, Patacchini R (2011) Cigarette smoke and α, β-unsaturated aldehydes elicit VEGF release through the p38 MAPK pathway in human airway smooth muscle cells and lung fibroblasts. Br J Pharmacol 163(3):649–661. https://doi.org/10.1111/j.1476-5381.2011.01253.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vatsyayan R, Kothari H, Pendurthi UR, Rao LVM (2013) 4-Hydroxy-2-nonenal enhances tissue factor activity in human monocytic cells via p38 mitogen-activated protein kinase activation-dependent phosphatidylserine exposure. Arterioscler Thromb Vasc Biol 33(7):1601–1611. https://doi.org/10.1161/atvbaha.113.300972

    Article  CAS  PubMed  Google Scholar 

  81. Usatyuk PV, Parinandi NL, Natarajan V (2006) Redox regulation of 4-hydroxy-2-nonenal-mediated endothelial barrier dysfunction by focal adhesion, adherens, and tight junction proteins. J Biol Chem 281(46):35554–35566. https://doi.org/10.1074/jbc.M607305200

    Article  CAS  PubMed  Google Scholar 

  82. Takimoto T, Yoshida M, Hirata H, Kashiwa Y, Takeda Y, Goya S, Kijima T, Kumagai T, Tachibana I, Kawase I (2012) 4-Hydroxy-2-nonenal induces chronic obstructive pulmonary disease-like histopathologic changes in mice. Biochem Biophys Res Commun 420(1):84–90. https://doi.org/10.1016/j.bbrc.2012.02.119

    Article  CAS  PubMed  Google Scholar 

  83. Chacko BK, Wall SB, Kramer PA, Ravi S, Mitchell T, Johnson MS, Wilson L, Barnes S, Landar A, Darley-Usmar VM (2016) Pleiotropic effects of 4-hydroxynonenal on oxidative burst and phagocytosis in neutrophils. Redox Biol 9:57–66. https://doi.org/10.1016/j.redox.2016.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Facchinetti F, Amadei F, Geppetti P, Tarantini F, Di Serio C, Dragotto A, Gigli PM, Catinella S, Civelli M, Patacchini R (2007) α, β-Unsaturated aldehydes in cigarette smoke release inflammatory mediators from human macrophages. Am J Respir Cell Mol Biol 37(5):617–623. https://doi.org/10.1165/rcmb.2007-0130OC

    Article  CAS  PubMed  Google Scholar 

  85. Ansari SA, Keshava S, Pendurthi UR, Rao LVM (2020) Oxidative Stress Product, 4-Hydroxy-2-Nonenal, Induces the Release of Tissue Factor-Positive Microvesicles From Perivascular Cells Into Circulation. Arteriosclerosis, Thrombosis, and Vascular Biology Doi: https://doi.org/10.1161/atvbaha.120.315187

  86. Patel RB, Kotha SR, Sauers LA, Malireddy S, Gurney TO, Gupta NN, Elton TS, Magalang UJ, Marsh CB, Haley BE, Parinandi NL (2012) Thiol-redox antioxidants protect against lung vascular endothelial cytoskeletal alterations caused by pulmonary fibrosis inducer, bleomycin: comparison between classical thiol-protectant, N-acetyl-L-cysteine, and novel thiol antioxidant, N, N’-bis-2-mercaptoethyl isophthalamide. Toxicol Mech Methods 22(5):383–396. https://doi.org/10.3109/15376516.2012.673089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Muresan XM, Cervellati F, Sticozzi C, Belmonte G, Chui CH, Lampronti I, Borgatti M, Gambari R, Valacchi G (2015) The loss of cellular junctions in epithelial lung cells induced by cigarette smoke is attenuated by corilagin. Oxid Med Cell Longev 2015:1–12. https://doi.org/10.1155/2015/631758

    Article  Google Scholar 

  88. Yin J, Lv L, Zhai P, Long T, Zhou Q, Pan H, Botwe G, Wang L, Wang Q, Tan L, Kuebler WM (2019) Connexin 40 regulates lung endothelial permeability in acute lung injury via the ROCK1-MYPT1- MLC20 pathway. Am J Physiol-Lung Cell Mol Physiol 316(1):L35–L44. https://doi.org/10.1152/ajplung.00012.2018

    Article  CAS  PubMed  Google Scholar 

  89. Chiarpotto E, Castello L, Leonarduzzi G, Biasi F, Poli G (2005) Role of 4-hydroxy-2,3-nonenal in the pathogenesis of fibrosis. BioFactors 24(1–4):229–236. https://doi.org/10.1002/biof.5520240127

    Article  CAS  PubMed  Google Scholar 

  90. Koo HY, El-Baz LMF, House S, Cilvik SN, Dorry SJ, Shoukry NM, Salem ML, Hafez HS, Dulin NO, Ornitz DM, Guzy RD (2018) Fibroblast growth factor 2 decreases bleomycin-induced pulmonary fibrosis and inhibits fibroblast collagen production and myofibroblast differentiation. J Pathol 246(1):54–66. https://doi.org/10.1002/path.5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hernandez DM, Kang JH, Choudhury M, Andrianifahanana M, Yin X, Limper AH, Leof EB (2020) IPF pathogenesis is dependent upon TGFβ induction of IGF-1. FASEB J. https://doi.org/10.1096/fj.201901719RR

    Article  PubMed  Google Scholar 

  92. Wang W, Xu H, Shi Y, Nandedkar S, Zhang H, Gao H, Feroah T, Weihrauch D, Schulte ML, Jones DW, Jarzembowski J, Sorci-Thomas M, Pritchard KA (2010) Genetic deletion of apolipoprotein A-I increases airway hyperresponsiveness, inflammation, and collagen deposition in the lung. J Lipid Res 51(9):2560–2570. https://doi.org/10.1194/jlr.M004549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Leonarduzzi G, Scavazza A, Biasi F, Chiarpotto E, Camandola S, Vogl S, Dargel R, Poli G (1997) The lipid peroxidation end product 4-hydroxy-2,3-nonenal up-regulates transforming growth factor β1 expression in the macrophage lineage: a link between oxidative injury and fibrosclerosis 1. FASEB J 11(11):851–857. https://doi.org/10.1096/fasebj.11.11.9285483

    Article  CAS  PubMed  Google Scholar 

  94. Akiba S, Kumazawa S, Yamaguchi H, Hontani N, Matsumoto T, Ikeda T, Oka M, Sato T (2006) Acceleration of matrix metalloproteinase-1 production and activation of platelet-derived growth factor receptor β in human coronary smooth muscle cells by oxidized LDL and 4-hydroxynonenal. Biochimica et Biophysica Acta (BBA) - Molecular Cell Res 1763 (8): 797–804 doi: https://doi.org/10.1016/j.bbamcr.2006.06.003

  95. Xu T, Liu S, Ma T, Jia Z, Zhang Z, Wang A (2017) Aldehyde dehydrogenase 2 protects against oxidative stress associated with pulmonary arterial hypertension. Redox Biol 11:286–296. https://doi.org/10.1016/j.redox.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  96. Gargiulo S, Gamba P, Testa G, Rossin D, Biasi F, Poli G, Leonarduzzi G (2015) Relation between TLR4/NF-κB signaling pathway activation by 27-hydroxycholesterol and 4-hydroxynonenal, and atherosclerotic plaque instability. Aging Cell 14(4):569–581. https://doi.org/10.1111/acel.12322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee SJ, Seo KW, Yun MR, Bae SS, Lee WS, Hong KW, Kim CD (2008) 4-Hydroxynonenal enhances MMP-2 production in vascular smooth muscle cells via mitochondrial ROS-mediated activation of the Akt/NF-κB signaling pathways. Free Radical Biol Med 45(10):1487–1492. https://doi.org/10.1016/j.freeradbiomed.2008.08.022

    Article  CAS  Google Scholar 

  98. Veith C, Boots AW, Idris M, van Schooten F-J, van der Vliet A (2019) Redox imbalance in idiopathic pulmonary fibrosis: a role for oxidant cross-talk between NADPH oxidase enzymes and mitochondria. Antioxid Redox Signal 31(14):1092–1115. https://doi.org/10.1089/ars.2019.7742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hecker L, Logsdon NJ, Kurundkar D, Kurundkar A, Bernard K, Hock T, Meldrum E, Sanders YY, Thannickal VJ (2014) Reversal of Persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Translational Med. https://doi.org/10.1126/scitranslmed.3008182

    Article  Google Scholar 

  100. Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, Thannickal VJ (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15(9):1077–1081. https://doi.org/10.1038/nm.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lenz AG, Costabel U, Maier KL (1996) Oxidized BAL fluid proteins in patients with interstitial lung diseases. Eur Respir J 9(2):307–312. https://doi.org/10.1183/09031936.96.09020307

    Article  CAS  PubMed  Google Scholar 

  102. Liu R, Chen H, Bai H, Zhang W, Wang X, Qin X, Zhang X, Li W, liang X, Hai C, (2013) Suppression of nuclear factor erythroid 2-related factor 2 via extracellular signal-regulated kinase contributes to bleomycin-induced oxidative stress and fibrogenesis. Toxicol Lett 220(1):15–25. https://doi.org/10.1016/j.toxlet.2013.03.034

    Article  CAS  PubMed  Google Scholar 

  103. Biswas SK, Rahman I (2009) Environmental toxicity, redox signaling and lung inflammation: The role of glutathione. Mol Aspects Med 30(1–2):60–76. https://doi.org/10.1016/j.mam.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  104. Cantin AM, Hubbard RC, Crystal RG (1989) Glutathione Deficiency in the Epithelial Lining Fluid of the Lower Respiratory Tract in Idiopathic Pulmonary Fibrosis. Am Rev Respir Dis 139(2):370–372. https://doi.org/10.1164/ajrccm/139.2.370

    Article  CAS  PubMed  Google Scholar 

  105. Muramatsu Y, Sugino K, Ishida F, Tatebe J, Morita T, Homma S (2016) Effect of inhaled N-acetylcysteine monotherapy on lung function and redox balance in idiopathic pulmonary fibrosis. Respir Investig 54(3):170–178. https://doi.org/10.1016/j.resinv.2015.11.004

    Article  PubMed  Google Scholar 

  106. Kinnula VL, Vuorinen K, Ilumets H, Rytila P, Myllarniemi M (2007) Thiol proteins, redox modulation and parenchymal lung disease. Curr Med Chem 14(2):213–222. https://doi.org/10.2174/092986707779313345

    Article  CAS  PubMed  Google Scholar 

  107. Zhu Z, Yang G, Wang Y, Yang J, Gao A, Niu P, Tian L (2013) Suppression of thioredoxin system contributes to silica-induced oxidative stress and pulmonary fibrogenesis in rats. Toxicol Lett 222(3):289–294. https://doi.org/10.1016/j.toxlet.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  108. Tiitto L, Kaarteenaho-Wiik R, Sormunen R, Holmgren A, Pääkkö P, Soini Y, Kinnula VL (2003) Expression of the thioredoxin system in interstitial lung disease. J Pathol 201(3):363–370. https://doi.org/10.1002/path.1435

    Article  CAS  PubMed  Google Scholar 

  109. Wang D, Yan Z, Bu L, An C, Deng B, Zhang J, Rao J, Cheng L, Zhang J, Zhang B, Xie J (2019) Protective effect of peptide DR8 on bleomycin-induced pulmonary fibrosis by regulating the TGF-β/MAPK signaling pathway and oxidative stress. Toxicol Appl Pharmacol 382:114703. https://doi.org/10.1016/j.taap.2019.114703

    Article  CAS  PubMed  Google Scholar 

  110. Peng L-Y, An L, Sun N-Y, Ma Y, Zhang X-W, Liu W-H, Liu B-L, Li P, Chen J (2019) Salvia miltiorrhiza restrains reactive oxygen species-associated pulmonary fibrosis via targeting Nrf2-Nox4 redox balance. Am J Chin Med 47(05):1113–1131. https://doi.org/10.1142/s0192415x19500575

    Article  CAS  PubMed  Google Scholar 

  111. Zheng R, Dragomir A-C, Mishin V, Richardson JR, Heck DE, Laskin DL, Laskin JD (2014) Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats. Toxicol Appl Pharmacol 279(1):43–52. https://doi.org/10.1016/j.taap.2014.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sidramagowda Patil S, Hernández-Cuervo H, Fukumoto J, Krishnamurthy S, Lin M, Alleyn M, Breitzig M, Narala VR, Soundararajan R, Lockey RF, Kolliputi N, Galam L (2021) Alda-1 attenuates hyperoxia-induced acute lung injury in mice. Front Pharmacol. https://doi.org/10.3389/fphar.2020.597942

    Article  PubMed  PubMed Central  Google Scholar 

  113. Patil SS, Hernández-Cuervo H, Fukumoto J, Narala VR, Saji S, Borra M, Alleyn M, Lin M, Soundararajan R, Lockey R, Kolliputi N, Galam L (2019) Alda-1 attenuates hyperoxia-induced mitochondrial dysfunction in lung vascular endothelial cells. Aging 11(12):3909–3918. https://doi.org/10.18632/aging.102012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from CONACYT (project CB-287162) and by a grant from Secretary of Public Education (SEP), Strengthening program in Educational Quality 2018 & 2019 (PFCE). We thank Universidad Autónoma Benito Juárez de Oaxaca for all the administrative support.

Funding

Grant from CONACYT, project CB-287162 and grant from SEP, PFCE- 2018 & 2019.

Author information

Authors and Affiliations

Authors

Contributions

Reyes-Jiménez E, Ramírez-Hernández AA, Santos-Álvarez JC, Velázquez-Enríquez JM, and Pina-Canseco S performed the literature search and wrote the manuscript; Baltiérrez-Hoyos R supervised the writing and style correction of the manuscript; Vásquez-Garzón VR designed the project and supervised the writing and style correction of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Verónica Rocío Vásquez-Garzón.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest with respect to the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Jiménez, E., Ramírez-Hernández, A., Santos-Álvarez, J. et al. Involvement of 4-hydroxy-2-nonenal in the pathogenesis of pulmonary fibrosis. Mol Cell Biochem 476, 4405–4419 (2021). https://doi.org/10.1007/s11010-021-04244-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04244-9

Keywords

Navigation