Skip to main content
Log in

Gibberellic acids promote growth and exopolysaccharide production in Tetraselmis suecica under reciprocal nitrogen concentration: an assessment on antioxidant properties and nutrient removal efficacy of immobilized iron-magnetic nanoparticles

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The present study was aimed to assess the effect of gibberellic acids to enhance the growth, biomass, pigment, and exopolysaccharides production in Tetraselmis suecica under reciprocal nitrogen concentrations. For this study, the seven types of experimental media (N-P, NL-P/2GA3, N0-P/2GA3, NL-P/4GA3, N0-P/4GA3, NL-P/6GA3, and N0-P/6GA3) were prepared with the addition of gibberellic acids under various nitrogen concentrations. The experiment lasted for 15 days and the cell density, biomass, chlorophyll ‘a’, and exopolysaccharides (EPS) concentration of T. suecica were estimated for every 3 days. Then the EPS was subjected to the analyses of chemical (carbohydrate, protein, sulfate, and uronic acid), and antioxidant activity. In addition, nutrient removal efficiency was evaluated using different concentration of EPS. The highest DPPH (2,2-diphenyl-1-picrylhydrazyl) (86.7 ± 0.95%) and hydroxyl radical activity (85.7 ± 2.48%) were observed at the EPS concentrations 2.5 and 1.2 mg/mL, respectively. The immobilized magnetic Fe3O4–EPS (ferric oxide–exopolysaccharides) nanoparticles (5.0 and 10.0 g/L) have efficiently removed the excessive phosphate (89.5 ± 1.65%) and nitrate (73.5 ± 1.72%) from the Litopenaeus vannamei cultured wastewater. Thus, the application of gibberellic acids combined with limited nitrogen concentration could produce higher EPS that could exhibit excellent antioxidant activity, and nutrient removal efficacy in the form of Fe3O4–EPS magnetic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel Hameed MS (2007) Effect of algal density in bead, bead size and bead concentrations on wastewater nutrient removal. Afr J Biotechnol 6:1185–1191

    CAS  Google Scholar 

  • Barboríková J, Šutovská M, Kazimierová I, Jošková M, Fraňová S, Kopecký J, Capek P (2019) Extracellular polysaccharide produced by Chlorella vulgaris—chemical characterization and anti-asthmatic profile. Int J Biol Macromol 135:1–11

    Article  PubMed  CAS  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalga strains. Bioresour Technol 124:217–226

    Article  CAS  PubMed  Google Scholar 

  • Capek P, Matulová M, Šutovská M, Barboríková J, Molitorisová M, Kazimierová I (2020) Chlorella vulgaris α-L-arabino-α-L-rhamno-α, β-D-galactan structure and mechanisms of its anti-inflammatory and anti-remodelling effects. Int J Biol Macromol 162:188–198

  • Chen Y, Liu X, Wu L, Tong A, Zhao L, Liu B, Zhao C (2018) Physicochemical characterization of polysaccharides from Chlorella pyrenoidosa and its anti-ageing effects in Drosophila melanogaster. Carbohydr Polym 185:120–126

    Article  CAS  PubMed  Google Scholar 

  • Choi YK, Kim HJ, Kumaran RS, Song HJ, Song KG, Kim KJ, Kim HJ (2017) Enhanced growth and total fatty acid production of microalgae under various lighting conditions induced by flashing light. Eng Life Sci 17:976–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu F, Chu P, Cai P, Li W, Lam PKS, Zeng RJ (2013) Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour Technol 134:341–346

    Article  CAS  PubMed  Google Scholar 

  • Demming-Adams B, Adams WW (2002) Antioxidants in photosynthesis and human nutrition. Science 298:49–53

    Google Scholar 

  • Dinesh Kumar S, Santhanam P, Jayalakshmi T, Nandakumar R, Ananth S, Shenbaga Devi A, Balaji Prasath B (2013) Optimization of pH and retention time on the removal of nutrients and heavy metal (zinc) using immobilized marine microalga Chlorella marina. J Biol Sci 13:400–405

    Article  CAS  Google Scholar 

  • Dinesh Kumar S, Santhanam P, Jayalakshmi T, Nandakumar R, Ananth S, Shenbaga Devi A, Balaji Prasath B (2015) Ex-situ studies on excessive nutrients and heavy metals removal efficacy of marine microalga Chlorella marina (Butcher) for wastewater treatment. Indian J Geo-Mar Sci 44:97–103

    Google Scholar 

  • Dinesh Kumar S, Ro KM, Santhanam P, Dhanalakshmi B, Latha S, Kim MK (2018a) Initial population density plays a vital role to enhance biodiesel productivity of Tetraselmis sp. under reciprocal nitrogen concentration. Bioresource Technol Rep 3:15–21

    Article  Google Scholar 

  • Dinesh Kumar S, Santhanam P, Prabhavathi P, Kanimozhi B, Abirami M, Park MS, Kim MK (2018b) Optimal conditions for the treatment of shrimp culture effluent using immobilized marine microalga Picochlorum maculatum (PSDK01). Proc Nat Acad Sci, India Sec b: Biol Sci 88:1177–1185

    Article  CAS  Google Scholar 

  • Dinesh Kumar S, Sojin K, Santhanam P, Dhanalakshmi B, Latha S, Kim MK (2020) Reciprocal response of nitrogen for enhancing growth and proximate compositions of marine microalga Tetraselmis sp. under low saline conditions. Indian J Geo-Mar Sci 49:326–332

    Google Scholar 

  • Dodgson KS, Price RG (1962) A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem J 84:106–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du K, Wen X, Wang Z, Liang F, Luo L, Peng X, Li Y (2019) Integrated lipid production, CO2 fixation, and removal of SO2 and NO from simulated flue gas by oleaginous Chlorella pyrenoidosa. Environ Sci Poll Res 26:16195–16209

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Falkowska M, Pietryczuk A, Piotrowska A, Bajguz A, Grygoruk A, Czerpak R (2011) The effect of gibberellic acid (GA3) on growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophyceae) Beijerinck exposed to cadmium and lead stress. Pol J Environ Stud 20:53–59

    Google Scholar 

  • Fillsetti-Cozzi TMCC, Carpita NC (1991) Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197:157–162

    Article  Google Scholar 

  • Flores C, Lima RT, Adessi A, Sousa A, Pereira SB, Granja PL, Philippis RD, Soares P, Tamagnini P (2019) Characterization and antitumor activity of the extracellular carbohydrate polymer from the cyanobacterium Synechocystis ΔsigF mutant. Int J Biol Macromol 136:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Go S, Lee SJ, Jeong GT, Kim SK (2012) Factors affecting the growth and the oil accumulation of marine microalgae, Tetraselmis suecica. Bioprocess Biosyst Eng 35:145–150

    Article  CAS  PubMed  Google Scholar 

  • Gomaa M, Yousef N (2020) Optimization of production and intrinsic viscosity of an exopolysaccharide from a high yielding Virgibacillus salarius BM02: study of its potential antioxidant, emulsifying properties and application in the mixotrophic cultivation of Spirulina platensis. Int J Biol Macromol 149:552–561

    Article  CAS  PubMed  Google Scholar 

  • Gopinath V, Saravanan S, Al-Maleki AR, Ramesh M, Vadivelu J (2018) A review of natural polysaccharides for drug delivery applications: special focus on cellulose, starch and glycogen. Biomed Pharm 107:96–108

    Article  CAS  Google Scholar 

  • Govarthanan M, Shim J, Praburaman L, Kim SA, Oh BT (2016) Isolation of an exopolysaccharide-producing heavy metal-resistant Halomonas sp. MG Arch Microbiol 198:205–209

    Article  CAS  PubMed  Google Scholar 

  • Govarthanan M, Kamala-Kannan S, Selvankumar T, Mythili R, Srinivasan P, Kim H (2019) Effect of blue light on growth and exopolysaccharides production in phototrophic Rhodobacter sp. BT18 isolated from brackish water. Int J Biol Macromol 131:74–80

    Article  CAS  PubMed  Google Scholar 

  • Govarthanan M, Jeon CH, Jeon YH, Kwon JH, Bae H, Kim W (2020) Non-toxic nano approach for wastewater treatment using Chlorella vulgaris exopolysaccharides immobilized in iron-magnetic nanoparticles. Int J Biol Macromol 162:1241–1249

    Article  CAS  PubMed  Google Scholar 

  • Han SI, Kim HS, Han KH, Han A (2019) Digital quantification and selection of high-lipid-producing microalgae through a lateral dielectrophoresis-based microfluidic platform. Lab Chip 19:4128–4138

    Article  CAS  PubMed  Google Scholar 

  • Hosikian A, Lim S, Halim R, Danquah MK (2010) Chlorophyll extraction from microalgae: a review on the process engineering aspects. Int J Chem Eng, 391632. https://doi.org/10.1155/2010/391632

  • Hussain F, Shah SZ, Shuaib M, Bahadur S, Muhammad I (2019) Optimization conditions for native microalgal strains grown on high ammonia-containing wastewater and their biomass utilization. Limn Rev 19:191–198

    CAS  Google Scholar 

  • Hussein MH, Abou-ElWafa GS, Shaaban-Dessuuki SA, Hassan NI (2015) Characterization and antioxidant activity of exopolysaccharide secreted by Nostoc carneum. Int J Pharm 11:432–439

    Article  CAS  Google Scholar 

  • Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063

    Article  CAS  PubMed  Google Scholar 

  • Jenkins D, Medsker L (1964) A brucine method for the determination of nitrate in ocean, estuarine, and fresh waters. Anal Chem 36:61

    Article  Google Scholar 

  • Jin YJ, Liu F, Tong MP, Hou YL (2012) Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles. J Hazard Mater 227–228:461–468

    Article  PubMed  CAS  Google Scholar 

  • Kamalanathan M, Pierangelini M, Shearman LA, Gleadow R, Beardall J (2016) Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. J Appl Phycol 28:1509–1520

    Article  CAS  Google Scholar 

  • Kim G, Bae J, Lee K (2016) Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp. Bioresour Technol 205:274–279

    Article  CAS  PubMed  Google Scholar 

  • Kojima M, Shishido K, Koobayashi S, Dobashi M, Ino S (1973) A Chlorella polysaccharide as a factor stimulating RES activity. J Reticuloendothel Soc 14:192–208

    CAS  PubMed  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1997) Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ Technol 18:945–951

    Article  CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:349–382

    Google Scholar 

  • Liu J, Zhao Z, Jiang G (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Ranadall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Madani NSH, Mehrgan MS, Shekarabi SPH, Pourang N (2021) Regulatory effect of gibberellic acid (GA3) on the biomass productivity and some metabolites of a marine microalga, Isochrysis galbana. J Appl Phycol 33:255–262

    Article  CAS  Google Scholar 

  • Matheickal JT, Yu Q, Woodburn GM (1999) Biosorption of cadmium (II) from aqueous solution by pre-treated biomass of marine algae Durvillaea potatorum. Water Res 33:335–342

    Article  CAS  Google Scholar 

  • Medipally SR, Yusoff FM, Banerjee S, Shariff M (2015) Microalgae as sustainable renewable energy feedstock for biofuel production. BioMed Res Int 519513:1–13

    Article  CAS  Google Scholar 

  • Melo-Silveira RF, Fidelis GP, Viana RLS, Soeiro VC, Silva RA, Machado D, Costa LS, Ferreira CV, Rocha HAO (2014) Antioxidant and antiproliferative activities of methanolic extract from a neglected agricultural product: corn cobs. Molecules 19:5360–5378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra A, Jha B (2009) Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresour Technol 100:3382–3386

    Article  CAS  PubMed  Google Scholar 

  • Mousavi M, Habibi-Yangjeh A, Abitorabi M (2016) Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. J Coll Int Sci 480:218–231

    Article  CAS  Google Scholar 

  • Naseem H, Ahsan M, Shahid MA, Khan N (2018) Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol 58:1009–1022

    Article  CAS  PubMed  Google Scholar 

  • Nugud A, Sandeep D, El-Serafi AT (2018) Two faces of the coin:mini review for dissecting the role of reactive oxygen species in stem cell potency and lineage commitment. J Adv Res 14:73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozioko FU, Chiejina NV, Ogbonna JC (2015) Effect of some phytohormones on growth characteristics of Chlorella sorokiniana IAM-C212 under photoautotrophic conditions. African J Biotechnol 14:2367–2376

    Article  Google Scholar 

  • Pan A, Ye X, Franco OH, Li H, Yu Z, Zou S, Lin X (2008) Insulin resistance and depressive symptoms in middle-aged and elderly Chinese: findings from the nutrition and health of aging population in China study. J Affect Disord 109:75–82

    Article  CAS  PubMed  Google Scholar 

  • Park WK, Yoo G, Moon M, Kim CW, Choi YE, Yang JW (2013) Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl Biochem Biotechnol 171:1128–1142

    Article  CAS  PubMed  Google Scholar 

  • Parker C (2013) The effects of environmental stressors on biofilm formation of Chlorella vulgaris. Appalachian State University ASU, Boone

    Google Scholar 

  • Parsaeimehr A, Mancera-Andrade EI, Robledo-Padilla F, Iqbal HM, Parra-Saldivar R (2017) A chemical approach to manipulate the algal growth, lipid content and high-value alpha-linolenic acid for biodiesel production. Algal Res 26:312–322

    Article  Google Scholar 

  • Perumal P, BalajiPrasath B, Santhanam P, Shenbaga Devi A, Dinesh Kumar S, Jeyanthi S (2015) Isolation and intensive culture of marine microalgae. In: Santhanam P, Thirunavukkarasu AR, Perumal P (eds) Advances in marine and brackishwater aquaculture. Springer Publisher, Heidelberg, pp 1–16

    Chapter  Google Scholar 

  • Qi J, Kim SM (2017) Characterization and immunomodulatory activities of polysaccharides extracted from green alga Chlorella ellipsoidea. Int J Biol Macromol 95:106–114

    Article  CAS  PubMed  Google Scholar 

  • Qiao DL, Kea CL, Hua B, Luo JG, Ye H, Sun Y (2009) Antioxidant activities of polysaccharides from Hyriopsis cumingii. Carbohyd Polym 78:199–204

    Article  CAS  Google Scholar 

  • Rabha B, Nadra RS, Ahmed B (2012) Effect of some fermentation substrates and growth temperature on exopolysaccharide production by Streptococcus thermophilus BN1. Int J Biosci Biochem Bioinfor 2:44

    Google Scholar 

  • Rani RP, Anandharaj M, David Ravindran A (2018) Characterization of a novel exopolysaccharide produced by Lactobacillus gasseri FR4 and demonstration of its in vitro biological properties. Int J Biol Macromol 109:772–783

    Article  CAS  PubMed  Google Scholar 

  • Renuka N, Guldhe A, Singh P, Bux F (2018) Combined effect of exogenous phytohormones on biomass and lipid production in Acutodesmus obliquus under nitrogen limitation. Energy Conv Manag 168:522–528

    Article  CAS  Google Scholar 

  • Reshma R, Chitra Devi K, Dinesh Kumar S, Santhanam P, Perumal P, Krishnaveni N, Begum A, Pragnya M, Arthikha R, Dhanalakshmi B, Kim M-K (2021) Enhancement of pigments production in the green microalga Dunaliella salina (PSBDU05) under optimized culture condition. Bioresource Technol Rep 14:100672

    Article  Google Scholar 

  • Richmond A, Hu Q (2013) Biological principles of mass cultivation of photoautotrophic microalgae. Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. John Wiley & Sons, Chichester, pp 171–204

    Chapter  Google Scholar 

  • Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbio 58:1284–1291

    Article  CAS  Google Scholar 

  • Sharma V, Harjai K, Shukla G (2018) Effect of bacteriocin and exopolysaccharides isolated from probiotic on P. aeruginosa PAO1 biofilm. Folia Microbiol 63:181–190

    Article  CAS  Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219

    Article  CAS  PubMed  Google Scholar 

  • Song L, Guanter L, Guan K, You L, Huete A, Ju W, Zhang Y (2018) Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains. Global Change Biol 24:4023–4037

    Article  Google Scholar 

  • Strickland J, Parsons TR (1972) A practical handbook of seawater analysis, 2nd edn. Fisheries Research Board of Canada, Ottawa, Canada, pp 185–190

    Google Scholar 

  • Su J, Kang D, Xiang W, Wu C (2016) Periphyton biofilm development and its role in nutrient cycling in paddy microcosms. J Soils Sed 17:810–819

    Article  Google Scholar 

  • Suárez ER, Kralovec JA, Noseda MD, Ewart HS, Barrow CJ, Lumsden MD, Grindley TB (2005) Isolation, characterization and structural determination of aunique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa. Carbohydr Res 340:1489–1498

    Article  PubMed  CAS  Google Scholar 

  • Suárez ER, Bugden SM, Kai FB, Kralovec JA, Noseda MD, Barrow CJ, Grindley TB (2008) First isolation and structural determination of cyclic β-(1→ 2)-glucans from an alga Chlorella pyrenoidosa. Carbohydr Res 343(15):2623–2633

    Article  CAS  Google Scholar 

  • Subudhi S, Bisht V, Batta N, Pathak M, Devi A, Lal B (2016) Purification and characterization of exopolysaccharide bioflocculant produced by heavy metal resistant Achromobacter xylosoxidans. Carbohydr Polym 137:441–451

    Article  CAS  PubMed  Google Scholar 

  • Tabarsa M, Shin IS, Lee JH, Surayot U, Park W, You S (2015) An immune-enhancing water-soluble α-glucan from Chlorella vulgaris and structural characteristics. Food Sci Biotechnol 24:1933–1941

    Article  CAS  Google Scholar 

  • Takeda H, Hirokawa T (1978) Studies on the cell wall of Chlorella I. quantitative changes in cell wall polysaccharides during the cell cycle of Chlorella ellipsoidea. Plant Cell Physiol 19:591–598

    CAS  Google Scholar 

  • Udayan A, Kathiresan S, Arumugam M (2018) Kinetin and Gibberellic acid (GA3) act synergistically to produce high value polyunsaturated fatty acids in Nannochloropsis oceanica CASA CC201. Algal Res 32:182–192

    Article  Google Scholar 

  • Uhliariková I, Šutovská M, Barboríková J, Molitorisová M, Kim HJ, Park YI, Matulová M, Lukavský J, Hromadková Z, Capek P (2020) Structural characteristics and biological effects of exopolysaccharide produced by cyanobacterium Nostoc sp. Int J Biol Macromol 160:364–371

    Article  PubMed  CAS  Google Scholar 

  • Villay A, Laroche C, Roriz D, El Alaoui H, Delbac F, Michaud P (2013) Optimisation of culture parameters for exopolysaccharides production by the microalga Rhodella violacea. Bioresource Technol 146:732–735

    Article  CAS  Google Scholar 

  • Walne PR (1970) Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea. Mercenaria and Mytilus Fish Invest Ser 2:26

    Google Scholar 

  • Wang XJ, Xia SQ, Chen L, Zhao JF, Renault NJ, Chovelon JM (2006) Nutrients removal from municipal wastewater by chemical precipitation in a moving bed biofilm reactor. Process Biochem 41:824–828

    Article  CAS  Google Scholar 

  • Wei W, Li A, Pi S, Wang Q, Zhou L, Yang J, Ma F, Ni BJ (2018) Synthesis of Core−Shell magnetic nanocomposite Fe3O4@ microbial extracellular polymeric substances for simultaneous redox sorption and recovery of silver ions as silver nanoparticles. ACS Sustain Chem Eng 6:749–756

    Article  CAS  Google Scholar 

  • Wiriyathamcharoen S, Sarkar S, Jiemvarangkul P, Nguyen TT, Klysubun W, Padungthon S (2020) Synthesis optimization of hybrid anion exchanger containing trimethylamine functional groups and hydrated Fe (III) oxide nanoparticles for simultaneous nitrate and phosphate removal. Chem Eng J 381:122671

    Article  CAS  Google Scholar 

  • Wu J, Ma LL, Zeng RJ (2018) Role of extracellular polymeric substances in efficient chromium (VI) removal by algae-based Fe/C nano-composite. Chemosphere 211:608–616

    Article  CAS  PubMed  Google Scholar 

  • Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology Adv 34:1225–1244

    Article  CAS  Google Scholar 

  • Yao CH, Ai JN, Cao XP, Xue S (2013) Salinity manipulation as an effective method for enhanced starch production in the marine microalga Tetraselmis subcordiformis. Bioresour Technol 146:663–671

    Article  CAS  PubMed  Google Scholar 

  • Ye ZL, Ghyselbrecht K, Monballiu A, Pinoy L, Meesschaert B (2019) Fractionating various nutrient ions for resource recovery from swine wastewater using simultaneous anionic and cationic selective electrodialysis. Water Res 160:424–434

    Article  CAS  PubMed  Google Scholar 

  • Yim JH, Kim SJ, Ahn SH, Lee CK, Rhie KT, Lee HK (2004) Antiviral effects of sulfated exopolysaccharide from the marine microalga Gyrodinium impudicum strain KG03. Mar Biotechnol 6:17–25

    Article  CAS  Google Scholar 

  • Zhang J, Cao Y, Wang J, Guo X, Zheng Y, Zhao W, Mei X, Guo T, Yang Z (2016) Physicochemical characteristics and bioactivities of the exopolysaccharide and its sulphated polymer from Streptococcus thermophilus GST-6. Carbohydr Polym 146:368–375

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu L, Ren Y, Chen F (2019a) Characterization of exopolysaccharides produced by microalgae with antitumor activity on human colon cancer cells. Int J Biol Macromol 128:761–767

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu L, Chen F (2019b) Production and characterization of exopolysaccharides from Chlorella zofingiensis and Chlorella vulgaris with anti-colorectal cancer activity. Int J Biol Macromol 134:976–983

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Wang X, Liu J, Zhang L (2012) Phosphorus removal from wastewater using nanoparticulates of hydrated ferric oxide doped activated carbon fiber prepared by sol–gel method. Chem Eng J 200–202:619–626

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Head, Department of Marine Science and the authorities of Bharathidasan University, Tiruchirappalli for the facilities provided. SDK thanks the UGC, New Delhi, for providing Post-Doctoral Fellowship (Ref. No. F./31-1/2017/PDFSS-2017- -TAM-13681 dated 19.06.2017). Authors are grateful to the Department of Biotechnology (DBT), Govt. of India, New Delhi for the microalgae culture facility provided, through extramural project (BT/PR 5856/AAQ/3/598/2012).

Author information

Authors and Affiliations

Authors

Contributions

AP: formal analysis; GM: writing—review and editing; SDK: conceptualization, methodology, resources, and writing—original draft; PS: conceptualization, methodology, writing—review and editing; PP: writing—review and editing; NK: formal analysis; KND: formal analysis; SV: formal analysis.

Corresponding author

Correspondence to P. Santhanam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Communicated by Govarthanan Muthusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prathipa, A., Manigandan, G., Dinesh Kumar, S. et al. Gibberellic acids promote growth and exopolysaccharide production in Tetraselmis suecica under reciprocal nitrogen concentration: an assessment on antioxidant properties and nutrient removal efficacy of immobilized iron-magnetic nanoparticles. Arch Microbiol 203, 5647–5659 (2021). https://doi.org/10.1007/s00203-021-02545-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02545-7

Keywords

Navigation