Skip to main content

Advertisement

Log in

Circular RNA circ_0008360 Inhibits the Proliferation, Migration, and Inflammation and Promotes Apoptosis of Fibroblast-Like Synoviocytes by Regulating miR-135b-5p/HDAC4 Axis in Rheumatoid Arthritis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) have been demonstrated to play crucial roles in the development and progression of many diseases, including rheumatoid arthritis (RA). However, the functions and molecular mechanism of circ_0008360 in RA remain unclear. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to determine the expression of circ_0008360, microRNA-135b-5p (miR-135b-5p), and histone deacetylase 4 (HDAC4). Cell Counting Kit-8 (CCK-8) assay, wound healing assay, and flow cytometry analysis were performed to assess cell proliferation, migration, and apoptosis, respectively. Inflammatory response was evaluated by enzyme-linked immunosorbent assay (ELISA). The interaction between miR-135b-5p and circ_0008360 or HDAC4 was predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) and RNA pull-down assays. Western blot assay was used to detect the protein expression of HDAC4 and proliferating cell nuclear antigen (PCNA). The expression of circ_0008360 was downregulated in RA synovial tissues and RA fibroblast-like synoviocytes (RA-FLSs). Circ_0008360 suppressed the proliferation, migration, and inflammation and promoted apoptosis of RA-FLSs, and circ_0008360 knockdown showed opposite effects. Moreover, miR-135b-5p was a direct target of circ_0008360, and miR-135b-5p could reverse the effects of circ_0008360 on proliferation, migration, inflammation, and apoptosis in RA-FLSs. Furthermore, HDAC4 was a downstream target of miR-135b-5p, and miR-135b-5p accelerated the proliferation, migration, and inflammation and suppressed apoptosis of RA-FLSs by targeting HDAC4. In addition, circ_0008360 positively regulated HDAC4 expression by sponging miR-135b-5p. Circ_0008360 inhibited the proliferation, migration, and inflammation and facilitated apoptosis of RA-FLSs by sponging miR-135b-5p and upregulating HDAC4, providing a potential target for prevention and treatment of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

REFERENCES

  1. Araki, Y., and T. Mimura. 2016. The mechanisms underlying chronic inflammation in rheumatoid arthritis from the perspective of the epigenetic landscape. Journal of Immunology Research 2016: 6290682.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang, G., R. Mu, and H. Xu. 2015. Management of rheumatoid arthritis in People’s Republic of China - focus on tocilizumab and patient considerations. International Journal of General Medicine 8: 187–194.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Smolen, J.S., and D. Aletaha. 2015. Rheumatoid arthritis therapy reappraisal: Strategies opportunities and challenges. Nature Reviews Rheumatology 11 (5): 276–289.

    Article  PubMed  Google Scholar 

  4. Bartok, B., and G.S. Firestein. 2010. Fibroblast-like synoviocytes: Key effector cells in rheumatoid arthritis. Immunological Reviews 233 (1): 233–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shang, C.H., Q.Q. Zhang, and J.H. Zhou. 2016. Oridonin inhibits cell proliferation and induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes. Inflammation 39 (2): 873–880.

    Article  CAS  PubMed  Google Scholar 

  6. You, S., J.H. Koh, L. Leng, W.U. Kim, and R. Bucala. 2018. The tumor-like phenotype of rheumatoid synovium: Molecular profiling and prospects for precision medicine. Arthritis & Rheumatology 70 (5): 637–652.

    Article  CAS  Google Scholar 

  7. Memczak, S., M. Jens, A. Elefsinioti, F. Torti, J. Krueger, A. Rybak, L. Maier, S.D. Mackowiak, L.H. Gregersen, M. Munschauer, A. Loewer, U. Ziebold, M. Landthaler, C. Kocks, F. le Noble, and N. Rajewsky. 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495 (7441): 333–338.

    Article  CAS  PubMed  Google Scholar 

  8. Li, Y., Q. Zheng, C. Bao, S. Li, W. Guo, J. Zhao, D. Chen, J. Gu, X. He, and S. Huang. 2015. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Research 25 (8): 981–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, Y., C. Li, C. Tan, and X. Liu. 2016. Circular RNAs: A new frontier in the study of human diseases. Journal of Medical Genetics 53 (6): 359–365.

    Article  CAS  PubMed  Google Scholar 

  10. Meng, X., X. Li, P. Zhang, J. Wang, Y. Zhou, and M. Chen. 2017. Circular RNA: An emerging key player in RNA world. Briefings in Bioinformatics 18 (4): 547–557.

    CAS  PubMed  Google Scholar 

  11. Li, B., N. Li, L. Zhang, K. Li, Y. Xie, M. Xue, and Z. Zheng. 2018. Hsa_circ_0001859 Regulates ATF2 expression by functioning as an MiR-204/211 sponge in human rheumatoid arthritis. Journal of Immunology Research 2018: 9412387.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhong, S., Q. Ouyang, D. Zhu, Q. Huang, J. Zhao, M. Fan, Y. Cai, and M. Yang. 2020. Hsa_circ_0088036 promotes the proliferation and migration of fibroblast-like synoviocytes by sponging miR-140-3p and upregulating SIRT 1 expression in rheumatoid arthritis. Molecular Immunology 125: 131–139.

    Article  CAS  PubMed  Google Scholar 

  13. Wen, J., J. Liu, P. Zhang, H. Jiang, L. Xin, L. Wan, Y. Sun, D. Huang, Y. Sun, Y. Long, Y. Zhang, B. Bao, and G. Sun. 2020. RNA-seq reveals the circular RNA and miRNA expression profile of peripheral blood mononuclear cells in patients with rheumatoid arthritis. Bioscience Reports 40(4):BSR20193160.

  14. Hansen, T.B., T.I. Jensen, B.H. Clausen, J.B. Bramsen, B. Finsen, C.K. Damgaard, and J. Kjems. 2013. Natural RNA circles function as efficient microRNA sponges. Nature 495 (7441): 384–388.

    Article  CAS  PubMed  Google Scholar 

  15. Ardekani, A.M., and M.M. Naeini. 2010. The role of microRNAs in human diseases. Avicenna Journal of Medical Biotechnology 2 (4): 161.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Alvarez-Garcia, I., and E.A. Miska. 2005. MicroRNA functions in animal development and human disease. Development 132 (21): 4653–4662.

    Article  CAS  PubMed  Google Scholar 

  17. Yu, C., W. Chen, and X. Wang. 2011. MicroRNA in osteoarthritis. Journal of International Medical Research 39 (1): 1–9.

    Article  CAS  Google Scholar 

  18. Yang, S., and Y. Yang. 2015. Downregulation of microRNA-221 decreases migration and invasion in fibroblast-like synoviocytes in rheumatoid arthritis. Molecular Medicine Reports 12 (2): 2395–2401.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, C., A. Pan, X. Chen, J. Tu, X. Xia, and L. Sun. 2019. MiR-5571-3p and miR-135b-5p, derived from analyses of microRNA profile sequencing, correlate with increased disease risk and activity of rheumatoid arthritis. Clinical Rheumatology 38 (6): 1753–1765.

    Article  PubMed  Google Scholar 

  20. Gregoretti, I.V., Y.M. Lee, and H.V. Goodson. 2004. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. Journal of Molecular Biology 338 (1): 17–31.

    Article  CAS  PubMed  Google Scholar 

  21. Shao, L., and C. Hou. 2019. miR-138 activates NF-κB signaling and PGRN to promote rheumatoid arthritis via regulating HDAC4. Biochemical and Biophysical Research Communications 519 (1): 166–171.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Y., Y.Z. Xu, N. Sun, J.H. Liu, F.F. Chen, X.L. Guan, A. Li, F. Wang, Q.F. Zhao, H.Y. Wang, S.S. Song, W. Yu, J.N. Zhao, and X.J. Li. 2016. Long noncoding RNA expression profile in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Research & Therapy 18 (1): 227.

    Article  Google Scholar 

  23. Prelich, G., and B. Stillman. 1988. Coordinated leading and lagging strand synthesis during SV40 DNA replication in vitro requires PCNA. Cell 53 (1): 117–126.

    Article  CAS  PubMed  Google Scholar 

  24. Haque, S., and L.W. Harries. 2017. Circular RNAs (circRNAs) in health and disease. Genes 8 (12): 353.

    Article  PubMed Central  Google Scholar 

  25. Bartel, D.P. 2009. MicroRNAs: Target recognition and regulatory functions. Cell 136 (2): 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aletaha, D., and J.S. Smolen. 2018. Diagnosis and management of rheumatoid arthritis: A review. JAMA 320 (13): 1360–1372.

    Article  PubMed  Google Scholar 

  27. Falconer, J., A.N. Murphy, S.P. Young, A.R. Clark, S. Tiziani, M. Guma, and C.D. Buckley. 2018. Review: Synovial cell metabolism and chronic inflammation in rheumatoid arthritis. Arthritis & Rheumatology 70 (7): 984–999.

    Article  CAS  Google Scholar 

  28. Chen, L.L., and L. Yang. 2015. Regulation of circRNA biogenesis. RNA Biology 12 (4): 381–388.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu, C.X., X. Li, F. Nan, S. Jiang, X. Gao, S.K. Guo, W. Xue, Y. Cui, K. Dong, H. Ding, B. Qu, Z. Zhou, N. Shen, L. Yang, and L.L. Chen. 2019. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177 (4): 865-880.e821.

    Article  CAS  PubMed  Google Scholar 

  30. Meng, S., H. Zhou, Z. Feng, Z. Xu, Y. Tang, P. Li, and M. Wu. 2017. CircRNA: Functions and properties of a novel potential biomarker for cancer. Molecular Cancer 16 (1): 94.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Akhter, R. 2018. Circular RNA and Alzheimer’s disease. Circular RNAs 1087: 239–243.

    CAS  Google Scholar 

  32. Luo, Q., L. Zhang, X. Li, B. Fu, Z. Deng, C. Qing, R. Su, J. Xu, Y. Guo, Z. Huang, and J. Li. 2018. Identification of circular RNAs hsa_circ_0044235 in peripheral blood as novel biomarkers for rheumatoid arthritis. Clinical & Experimental Immunology 194 (1): 118–124.

    Article  CAS  Google Scholar 

  33. Tang, X., J. Wang, X. Xia, J. Tian, K. Rui, H. Xu, and S. Wang. 2019. Elevated expression of ciRS-7 in peripheral blood mononuclear cells from rheumatoid arthritis patients. Diagnostic Pathology 14 (1): 11.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Memczak, S., M. Jens, A. Elefsinioti, F. Torti, J. Krueger, A. Rybak, L. Maier, S.D. Mackowiak, L.H. Gregersen, and M. Munschauer. 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495 (7441): 333–338.

    Article  CAS  PubMed  Google Scholar 

  35. Du, J., F. Zhang, and J. Guo. 2018. miR-137 decreases proliferation, migration and invasion in rheumatoid arthritis fibroblast-like synoviocytes. Molecular Medicine Reports 17 (2): 3312–3317.

    CAS  PubMed  Google Scholar 

  36. Wu, J., W. Fan, L. Ma, and X. Geng. 2018. miR-708-5p promotes fibroblast-like synoviocytes’ cell apoptosis and ameliorates rheumatoid arthritis by the inhibition of Wnt3a/β-catenin pathway. Drug Design Development and Therapy 12: 3439–3447.

    Article  CAS  Google Scholar 

  37. Guo, T., H. Ding, H. Jiang, N. Bao, L. Zhou, and J. Zhao. 2018. miR-338-5p Regulates the viability, proliferation, apoptosis and migration of rheumatoid arthritis fibroblast-like synoviocytes by targeting NFAT5. Cellular Physiology and Biochemistry 49 (3): 899–910.

    Article  CAS  PubMed  Google Scholar 

  38. Wangyang, Y., L. Yi, T. Wang, Y. Feng, G. Liu, D. Li, and X. Zheng. 2018. MiR-199a-3p inhibits proliferation and induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via suppressing retinoblastoma 1. Bioscience Reports 38(6):BSR20180982.

  39. Felekkis, K., E. Touvana, C. Stefanou, and C. Deltas. 2010. microRNAs: A newly described class of encoded molecules that play a role in health and disease. Hippokratia 14 (4): 236.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Marroncelli, N., M. Bianchi, M. Bertin, S. Consalvi, V. Saccone, M. De Bardi, P.L. Puri, D. Palacios, S. Adamo, and V. Moresi. 2018. HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Scientific Reports 8 (1): 3448.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Spaety, M.E., A. Gries, A. Badie, A. Venkatasamy, B. Romain, C. Orvain, K. Yanagihara, K. Okamoto, A.C. Jung, G. Mellitzer, S. Pfeffer, and C. Gaiddon. 2019. HDAC4 levels control sensibility toward cisplatin in gastric cancer via the p53–p73/BIK pathway. Cancers (Basel) 11 (11): 1747.

    Article  CAS  PubMed Central  Google Scholar 

  42. Wang, Z., G. Qin, and T.C. Zhao. 2014. HDAC4: Mechanism of regulation and biological functions. Epigenomics 6 (1): 139–150.

    Article  CAS  PubMed  Google Scholar 

  43. Kawabata, T., K. Nishida, K. Takasugi, H. Ogawa, K. Sada, Y. Kadota, J. Inagaki, S. Hirohata, Y. Ninomiya, and H. Makino. 2010. Increased activity and expression of histone deacetylase 1 in relation to tumor necrosis factor-alpha in synovial tissue of rheumatoid arthritis. Arthritis Research & Therapy 12 (4): R133.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jinying Hao designed the study and wrote the manuscript. Yan Chen analyzed the data and performed the experiments. Yunxiang Yu summarized the data. All authors contributed to this study, read and approved the manuscript.

Corresponding author

Correspondence to Yunxiang Yu.

Ethics declarations

Ethics Approval and Consent to Participate

This study was approved by the Research Ethics Committee of Heping Hospital Affiliated to Changzhi Medical College. Informed consent was obtained.

Consent for Publication

Informed consent was obtained from all individual participants included in the study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Circ_0008360 was downregulated in RA synovial tissues and RA-FLSs.

2. Circ_0008360 inhibited the proliferation, migration and inflammation and promoted apoptosis of RA-FLSs by sponging miR-135b-5p.

3. MiR-135b-5p promoted the proliferation, migration and inflammation and inhibited apoptosis of RA-FLSs by targeting HDAC4.

4. Circ_0008360 regulated HDAC4 expression by acting as a sponge of miR-135b-5p.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, J., Chen, Y. & Yu, Y. Circular RNA circ_0008360 Inhibits the Proliferation, Migration, and Inflammation and Promotes Apoptosis of Fibroblast-Like Synoviocytes by Regulating miR-135b-5p/HDAC4 Axis in Rheumatoid Arthritis. Inflammation 45, 196–211 (2022). https://doi.org/10.1007/s10753-021-01538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01538-4

KEY WORDS

Navigation