Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 30, 2021

Neuroplasticity mediated by motor rehabilitation in Parkinson’s disease: a systematic review on structural and functional MRI markers

  • Francesca Baglio , Alice Pirastru ORCID logo EMAIL logo , Niels Bergsland , Marta Cazzoli and Eleonora Tavazzi

Abstract

Parkinson’s disease (PD) is the second most common neurological disease affecting the elderly population. Pharmacological and surgical interventions usually employed for PD treatment show transient effectiveness and are associated with the insurgence of side effects. Therefore, motor rehabilitation has been proposed as a promising supplement in the treatment of PD, reducing the global burden of the disease and improving patients quality of life. The present systematic review aimed to critically analyse the literature concerning MRI markers of brain functional and structural response to motor rehabilitation in PD. Fourteen out of 1313 studies were selected according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. Despite the limited number of retrieved studies coupled with their heterogeneity prevent ultimate conclusions from being drawn, motor rehabilitation seems to have beneficial effects on PD as measured both with clinical outcomes and MRI derived indices. Interestingly, consistent results seem to indicate that motor rehabilitation acts via a dual mechanism of strengthening cortico-subcortical pathways, restoring movements automaticity, or activating compensatory networks such as the fronto-parietal one. The employment of more advanced and quantitative MRI methods is warranted to establish and validate standardized metrics capable of reliably determining the changes induced by rehabilitative intervention.


Corresponding author: Alice Pirastru, IRCCS, Fondazione Don Carlo Gnocchi ONLUS, via Capecelatro 66, 20148 Milan, Italy, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We acknowledge Fondazione Crespi Spano for financially supporting Eleonora Tavazzi.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abbruzzese, G., Marchese, R., Avanzino, L., and Pelosin, E. (2016). Rehabilitation for Parkinson’s disease: current outlook and future challenges. Park. Relat. Disord. 22 (Suppl. 1): S60–S64, https://doi.org/10.1016/j.parkreldis.2015.09.005.Search in Google Scholar PubMed

Abe, Y., Kachi, T., Kato, T., Arahata, Y., Yamada, T., Washimi, Y., Iwai, K., Ito, K., Yanagisawa, N., and Sobue, G. (2003). Occipital hypoperfusion in Parkinson’s disease without dementia: correlation to impaired cortical visual processing. J. Neurol. Neurosurg. Psychiatry 74: 419–422, https://doi.org/10.1136/jnnp.74.4.419.Search in Google Scholar PubMed PubMed Central

Agosta, F., Caso, F., Stankovic, I., Inuggi, A., Petrovic, I., Svetel, M., Kostic, V.S., and Filippi, M. (2014). Cortico-striatal-thalamic network functional connectivity in hemiparkinsonism. Neurobiol. Aging 35: 2592–2602, https://doi.org/10.1016/j.neurobiolaging.2014.05.032.Search in Google Scholar PubMed

Agosta, F., Gatti, R., Sarasso, E., Volonté, M.A., Canu, E., Meani, A., Sarro, L., Copetti, M., Cattrysse, E., Kerckhofs, E., et al.. (2017). Brain plasticity in Parkinson’s disease with freezing of gait induced by action observation training. J. Neurol. 264: 88–101, https://doi.org/10.1007/s00415-016-8309-7.Search in Google Scholar PubMed

Alberts, J.L., Phillips, M., Lowe, M.J., Frankemolle, A., Thota, A., Beall, E.B., Feldman, M., Ahmed, A., and Ridgel, A.L. (2016). Cortical and motor responses to acute forced exercise in Parkinson’s disease. Park. Relat. Disord. 24: 56–62, https://doi.org/10.1016/j.parkreldis.2016.01.015.Search in Google Scholar PubMed PubMed Central

Batalik, L., Winnige, P., Dosbaba, F., Vlazna, D., and Janikova, A. (2021). Home-based aerobic and resistance exercise interventions in cancer patients and survivors: a systematic review. Cancers (Basel). 13: 1915, https://doi.org/10.3390/cancers13081915.Search in Google Scholar PubMed PubMed Central

Beeler, J.A., Petzinger, G., and Jakowec, M.W. (2013). The enemy within: propagation of aberrant corticostriatal learning to cortical function in Parkinson’s disease. Front. Neurol. 4: 134, https://doi.org/10.3389/fneur.2013.00134.Search in Google Scholar PubMed PubMed Central

Blair, J.C., Barrett, M.J., Patrie, J., Flanigan, J.L., Sperling, S.A., Elias, W.J., and Druzgal, T.J. (2019). Brain MRI reveals ascending atrophy in Parkinson’s disease across severity. Front. Neurol. 10: 1329, https://doi.org/10.3389/fneur.2019.01329.Search in Google Scholar PubMed PubMed Central

Boldrini, M., Fulmore, C.A., Tartt, A.N., Simeon, L.R., Pavlova, I., Poposka, V., Rosoklija, G.B., Stankov, A., Arango, V., Dwork, A.J., et al.. (2018). Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22: 589–599 e585, https://doi.org/10.1016/j.stem.2018.03.015.Search in Google Scholar PubMed PubMed Central

Boyke, J., Driemeyer, J., Gaser, C., Buchel, C., and May, A. (2008). Training-induced brain structure changes in the elderly. J. Neurosci. 28: 7031–7035, https://doi.org/10.1523/jneurosci.0742-08.2008.Search in Google Scholar

Bunzeck, N., Singh-Curry, V., Eckart, C., Weiskopf, N., Perry, R.J., Bain, P.G., Düzel, E., and Husain, M. (2013). Motor phenotype and magnetic resonance measures of basal ganglia iron levels in Parkinson’s disease. Park. Relat. Disord. 19: 1136–1142, https://doi.org/10.1016/j.parkreldis.2013.08.011.Search in Google Scholar PubMed PubMed Central

Carey, J.R., Bhatt, E., and Nagpal, A. (2005). Neuroplasticity promoted by task complexity. Exerc. Sport Sci. Rev. 33: 24–31.Search in Google Scholar

Chen, F.X., Kang, D.Z., Chen, F.Y., Liu, Y., Wu, G., Li, X., Yu, L.H., Lin, Y.X., and Lin, Z.Y. (2016). Gray matter atrophy associated with mild cognitive impairment in Parkinson’s disease. Neurosci. Lett. 617: 160–165, https://doi.org/10.1016/j.neulet.2015.12.055.Search in Google Scholar PubMed

De Micco, R., Russo, A., and Tessitore, A. (2018). Structural MRI in idiopathic Parkinson’s disease. Int. Rev. Neurobiol. 141: 405–438, https://doi.org/10.1016/bs.irn.2018.08.011.Search in Google Scholar PubMed

Delli Pizzi, S., Bellomo, R.G., Carmignano, S.M., Ancona, E., Franciotti, R., Supplizi, M., Barassi, G., Onofrj, M., Bonanni, L., and Saggini, R. (2017). Rehabilitation program based on sensorimotor recovery improves the static and dynamic balance and modifies the basal ganglia neurochemistry: a pilot 1H-MRS study on Parkinson’s disease patients. Medicine (Baltimore) 96: e8732, https://doi.org/10.1097/md.0000000000008732.Search in Google Scholar PubMed PubMed Central

Domingos, J., Keus, S.H.J., Dean, J., de Vries, N.M., Ferreira, J.J., and Bloem, B.R. (2018). The European physiotherapy guideline for Parkinson’s disease: implications for neurologists. J. Parkinsons Dis. 8: 499–502, https://doi.org/10.3233/JPD-181383.Search in Google Scholar PubMed

Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., and May, A. (2004). Neuroplasticity: changes in grey matter induced by training. Nature 427: 311–312, https://doi.org/10.1038/427311a.Search in Google Scholar PubMed

Droby, A., Maidan, I., Jacob, Y., Giladi, N., Hausdorff, J.M., and Mirelman, A. (2020). Distinct effects of motor training on resting-state functional networks of the brain in Parkinson’s disease. Neurorehabil. Neural Repair 34: 795–803, https://doi.org/10.1177/1545968320940985.Search in Google Scholar PubMed

Duchesne, C., Gheysen, F., Bore, A., Albouy, G., Nadeau, A., Robillard, M.E., Bobeuf, F., Lafontaine, A.L., Lungu, O., Bherer, L., et al.. (2016). Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson’s disease individuals. Neuroimage Clin. 12: 559–569, https://doi.org/10.1016/j.nicl.2016.09.011.Search in Google Scholar PubMed PubMed Central

Esposito, F., Tessitore, A., Giordano, A., De Micco, R., Paccone, A., Conforti, R., Pignataro, G., Annunziato, L., and Tedeschi, G. (2013). Rhythm-specific modulation of the sensorimotor network in drug-naive patients with Parkinson’s disease by levodopa. Brain 136: 710–725, https://doi.org/10.1093/brain/awt007.Search in Google Scholar PubMed

Fernández-Seara, M.A., Mengual, E., Vidorreta, M., Aznárez-Sanado, M., Loayza, F.R., Villagra, F., Irigoyen, J., and Pastor, M.A. (2012). Cortical hypoperfusion in Parkinson’s disease assessed using arterial spin labeled perfusion MRI. Neuroimage 59: 2743–2750, https://doi.org/10.1016/j.neuroimage.2011.10.033.Search in Google Scholar PubMed

Ferrazzoli, D., Ortelli, P., Cucca, A., Bakdounes, L., Canesi, M., and Volpe, D. (2020). Motor-cognitive approach and aerobic training: a synergism for rehabilitative intervention in Parkinson’s disease. Neurodegener. Dis. Manag. 10: 41–55, https://doi.org/10.2217/nmt-2019-0025.Search in Google Scholar

Filippi, M., Elisabetta, S., Piramide, N., and Agosta, F. (2018). Functional MRI in idiopathic Parkinson’s disease. Int. Rev. Neurobiol. 141: 439–467, https://doi.org/10.1016/bs.irn.2018.08.005.Search in Google Scholar

Fisher, B.E., Li, Q., Nacca, A., Salem, G.J., Song, J., Yip, J., Hui, J.S., Jakowec, M.W., and Petzinger, G.M. (2013). Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson’s disease. Neuroreport 24: 509–514, https://doi.org/10.1097/wnr.0b013e328361dc13.Search in Google Scholar

Fling, B.W., Cohen, R.G., Mancini, M., Carpenter, S.D., Fair, D.A., Nutt, J.G., and Horak, F.B. (2014). Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS ONE 9: e100291, https://doi.org/10.1371/journal.pone.0100291.Search in Google Scholar

Fling, B.W., Cohen, R.G., Mancini, M., Nutt, J.G., Fair, D.A., and Horak, F.B. (2013). Asymmetric pedunculopontine network connectivity in parkinsonian patients with freezing of gait. Brain 136: 2405–2418, https://doi.org/10.1093/brain/awt172.Search in Google Scholar

Global, Regional, and National Burden of Parkinson’s Disease. (2018) 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 17: 939–953, https://doi.org/10.1016/S1474-4422(18)30295-3.Search in Google Scholar

Goodwin, V.A., Richards, S.H., Taylor, R.S., Taylor, A.H., and Campbell, J.L. (2008). The effectiveness of exercise interventions for people with Parkinson’s disease: a systematic review and meta-analysis. Mov. Disord. 23: 631–640, https://doi.org/10.1002/mds.21922.Search in Google Scholar PubMed

Herz, D.M., Eickhoff, S.B., Løkkegaard, A., and Siebner, H.R. (2014). Functional neuroimaging of motor control in Parkinson’s disease: a meta-analysis. Hum. Brain Mapp. 35: 3227–3237, https://doi.org/10.1002/hbm.22397.Search in Google Scholar PubMed PubMed Central

Hirsch, M.A. and Farley, B.G. (2009). Exercise and neuroplasticity in persons living with Parkinson’s disease. Eur. J. Phys. Rehabil. Med. 45: 215–229.Search in Google Scholar

King, L.A., Mancini, M., Smulders, K., Harker, G., Lapidus, J.A., Ramsey, K., Carlson-Kuhta, P., Fling, B.W., Nutt, J.G., Peterson, D.S., et al.. (2020). Cognitively challenging agility boot camp program for freezing of gait in Parkinson disease. Neurorehabil. Neural Repair 34: 417–427, https://doi.org/10.1177/1545968320909331.Search in Google Scholar PubMed PubMed Central

Laganà, M.M., Pirastru, A., Pelizzari, L., Rossetto, F., Di Tella, S., Bergsland, N., Nemni, R., Meloni, M., and Baglio, F. (2020). Multimodal evaluation of neurovascular functionality in early Parkinson’s disease. Front. Neurol. 11: 831, https://doi.org/10.3389/fneur.2020.00831.Search in Google Scholar PubMed PubMed Central

Lewis, M.M., Du, G., Lee, E.-Y., Nasralah, Z., Sterling, N.W., Zhang, L., Wagner, D., Kong, L., Tröster, A.I., Styner, M., et al.. (2016). The pattern of gray matter atrophy in Parkinson’s disease differs in cortical and subcortical regions. J. Neurol. 263: 68–75, https://doi.org/10.1007/s00415-015-7929-7.Search in Google Scholar PubMed PubMed Central

Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gotzsche, P.C., Ioannidis, J.P., Clarke, M., Devereaux, P.J., Kleijnen, J., and Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339: b2700, https://doi.org/10.1136/bmj.b2700.Search in Google Scholar PubMed PubMed Central

Maidan, I., Bernad-Elazari, H., Gazit, E., Giladi, N., Hausdorff, J.M., and Mirelman, A. (2015). Changes in oxygenated hemoglobin link freezing of gait to frontal activation in patients with Parkinson disease: an fNIRS study of transient motor-cognitive failures. J. Neurol. 262: 899–908, https://doi.org/10.1007/s00415-015-7650-6.Search in Google Scholar PubMed

Maidan, I., Rosenberg-Katz, K., Jacob, Y., Giladi, N., Deutsch, J.E., Hausdorff, J.M., and Mirelman, A. (2016). Altered brain activation in complex walking conditions in patients with Parkinson’s disease. Park. Relat. Disord. 25: 91–96, https://doi.org/10.1016/j.parkreldis.2016.01.025.Search in Google Scholar PubMed

Maidan, I., Rosenberg-Katz, K., Jacob, Y., Giladi, N., Hausdorff, J.M., and Mirelman, A. (2017). Disparate effects of training on brain activation in Parkinson disease. Neurology 89: 1804–1810, https://doi.org/10.1212/wnl.0000000000004576.Search in Google Scholar

Mak, M.K., Wong-Yu, I.S., Shen, X., and Chung, C.L. (2017). Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat. Rev. Neurol. 13: 689–703, https://doi.org/10.1038/nrneurol.2017.128.Search in Google Scholar PubMed

Melzer, T.R., Watts, R., MacAskill, M.R., Pearson, J.F., Rüeger, S., Pitcher, T.L., Livingston, L., Graham, C., Keenan, R., Shankaranarayanan, A., et al.. (2011). Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson’s disease. Brain 134: 845–855, https://doi.org/10.1093/brain/awq377.Search in Google Scholar PubMed PubMed Central

Messa, L.V., Ginanneschi, F., Momi, D., Monti, L., Battisti, C., Cioncoloni, D., Pucci, B., Santarnecchi, E., and Rossi, A. (2019). Functional and brain activation changes following specialized upper-limb exercise in Parkinson’s disease. Front. Hum. Neurosci. 13: 350, https://doi.org/10.3389/fnhum.2019.00350.Search in Google Scholar PubMed PubMed Central

Myers, P.S., McNeely, M.E., Pickett, K.A., Duncan, R.P., and Earhart, G.M. (2018). Effects of exercise on gait and motor imagery in people with Parkinson disease and freezing of gait. Park. Relat. Disord. 53: 89–95, https://doi.org/10.1016/j.parkreldis.2018.05.006.Search in Google Scholar PubMed PubMed Central

Nackaerts, E., D’Cruz, N., Dijkstra, B.W., Gilat, M., Kramer, T., and Nieuwboer, A. (2019). Towards understanding neural network signatures of motor skill learning in Parkinson’s disease and healthy aging. Br. J. Radiol. 92: 20190071, https://doi.org/10.1259/bjr.20190071.Search in Google Scholar PubMed PubMed Central

Nackaerts, E., Michely, J., Heremans, E., Swinnen, S.P., Smits-Engelsman, B.C.M., Vandenberghe, W., Grefkes, C., and Nieuwboer, A. (2018). Training for micrographia alters neural connectivity in Parkinson’s disease. Front. Neurosci. 12: 3, https://doi.org/10.3389/fnins.2018.00003.Search in Google Scholar

Pagonabarraga, J., Corcuera-Solano, I., Vives-Gilabert, Y., Llebaria, G., García-Sánchez, C., Pascual-Sedano, B., Delfino, M., Kulisevsky, J., and Gómez-Ansón, B. (2013). Pattern of regional cortical thinning associated with cognitive deterioration in Parkinson’s disease. PLoS ONE 8: e54980, https://doi.org/10.1371/journal.pone.0054980.Search in Google Scholar

Pan, P.L., Song, W., and Shang, H.F. (2012). Voxel-wise meta-analysis of gray matter abnormalities in idiopathic Parkinson’s disease. Eur. J. Neurol. 19: 199–206, https://doi.org/10.1111/j.1468-1331.2011.03474.x.Search in Google Scholar

Park, A. and Stacy, M. (2009). Non-motor symptoms in Parkinson’s disease. J. Neurol. 256: 293–298, https://doi.org/10.1007/s00415-009-5240-1.Search in Google Scholar

Pelizzari, L., Di Tella, S., Rossetto, F., Laganà, M.M., Bergsland, N., Pirastru, A., Meloni, M., Nemni, R., and Baglio, F. (2020). Parietal perfusion alterations in Parkinson’s disease patients without dementia. Front. Neurol. 11: 562, https://doi.org/10.3389/fneur.2020.00562.Search in Google Scholar

Petzinger, G.M., Fisher, B.E., McEwen, S., Beeler, J.A., Walsh, J.P., and Jakowec, M.W. (2013). Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol. 12: 716–726, https://doi.org/10.1016/s1474-4422(13)70123-6.Search in Google Scholar

Petzinger, G.M., Fisher, B.E., Van Leeuwen, J.E., Vukovic, M., Akopian, G., Meshul, C.K., Holschneider, D.P., Nacca, A., Walsh, J.P., and Jakowec, M.W. (2010). Enhancing neuroplasticity in the basal ganglia: the role of exercise in Parkinson’s disease. Mov. Disord. 25 (Suppl. 1): S141–S145, https://doi.org/10.1002/mds.22782.Search in Google Scholar PubMed PubMed Central

Przedborski, S. (2017). The two-century journey of Parkinson disease research. Nat. Rev. Neurosci. 18: 251–259, https://doi.org/10.1038/nrn.2017.25.Search in Google Scholar PubMed

Pyatigorskaya, N., Gallea, C., Garcia-Lorenzo, D., Vidailhet, M., and Lehericy, S. (2014). A review of the use of magnetic resonance imaging in Parkinson’s disease. Ther. Adv. Neurol. Disord. 7: 206–220, https://doi.org/10.1177/1756285613511507.Search in Google Scholar PubMed PubMed Central

Rektorova, I., Biundo, R., Marecek, R., Weis, L., Aarsland, D., and Antonini, A. (2014). Grey matter changes in cognitively impaired Parkinson’s disease patients. PLoS ONE 9: e85595, https://doi.org/10.1371/journal.pone.0085595.Search in Google Scholar PubMed PubMed Central

Rolinski, M., Griffanti, L., Szewczyk-Krolikowski, K., Menke, R.A., Wilcock, G.K., Filippini, N., Zamboni, G., Hu, M.T., and Mackay, C.E. (2015). Aberrant functional connectivity within the basal ganglia of patients with Parkinson’s disease. Neuroimage Clin. 8: 126–132, https://doi.org/10.1016/j.nicl.2015.04.003.Search in Google Scholar PubMed PubMed Central

Sacheli, M.A., Neva, J.L., Lakhani, B., Murray, D.K., Vafai, N., Shahinfard, E., English, C., McCormick, S., Dinelle, K., Neilson, N., et al.. (2019). Exercise increases caudate dopamine release and ventral striatal activation in Parkinson’s disease. Mov. Disord. 34: 1891–1900, https://doi.org/10.1002/mds.27865.Search in Google Scholar PubMed

Saleh, S., Fluet, G., Qiu, Q., Merians, A., Adamovich, S.V., and Tunik, E. (2017). Neural patterns of reorganization after intensive robot-assisted virtual reality therapy and repetitive task practice in patients with chronic stroke. Front. Neurol. 8: 452, https://doi.org/10.3389/fneur.2017.00452.Search in Google Scholar PubMed PubMed Central

Segura, C., Eraso, M., Bonilla, J., Mendivil, C.O., Santiago, G., Useche, N., Bernal-Pacheco, O., Monsalve, G., Sanchez, L., Hernández, E., et al.. (2020). Effect of a high-intensity tandem bicycle exercise program on clinical severity, functional magnetic resonance imaging, and plasma biomarkers in Parkinson’s disease. Front. Neurol. 11: 656, https://doi.org/10.3389/fneur.2020.00656.Search in Google Scholar PubMed PubMed Central

Sehm, B., Taubert, M., Conde, V., Weise, D., Classen, J., Dukart, J., Draganski, B., Villringer, A., and Ragert, P. (2014). Structural brain plasticity in Parkinson’s disease induced by balance training. Neurobiol. Aging 35: 232–239, https://doi.org/10.1016/j.neurobiolaging.2013.06.021.Search in Google Scholar PubMed

Shah, C., Beall, E.B., Frankemolle, A.M., Penko, A., Phillips, M.D., Lowe, M.J., and Alberts, J.L. (2016). Exercise therapy for Parkinson’s disease: pedaling rate is related to changes in motor connectivity. Brain Connect. 6: 25–36, https://doi.org/10.1089/brain.2014.0328.Search in Google Scholar PubMed PubMed Central

Silva-Batista, C., de Lima-Pardini, A.C., Nucci, M.P., Coelho, D.B., Batista, A., Piemonte, M.E.P., Barbosa, E.R., Teixeira, L.A., Corcos, D.M., Amaro, E.Jr., et al.. (2020). A randomized, controlled trial of exercise for parkinsonian individuals with freezing of gait. Mov. Disord. 35: 1607–1617, https://doi.org/10.1002/mds.28128.Search in Google Scholar PubMed PubMed Central

Simioni, A.C., Dagher, A., and Fellows, L.K. (2017). Effects of levodopa on corticostriatal circuits supporting working memory in Parkinson’s disease. Cortex 93: 193–205, https://doi.org/10.1016/j.cortex.2017.05.021.Search in Google Scholar PubMed

Smart, N.A., Waldron, M., Ismail, H., Giallauria, F., Vigorito, C., Cornelissen, V., and Dieberg, G. (2015). Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int. J. Evid. Based Healthc. 13: 9–18, https://doi.org/10.1097/xeb.0000000000000020.Search in Google Scholar PubMed

Szewczyk-Krolikowski, K., Menke, R.A., Rolinski, M., Duff, E., Salimi-Khorshidi, G., Filippini, N., Zamboni, G., Hu, M.T., and Mackay, C.E. (2014). Functional connectivity in the basal ganglia network differentiates PD patients from controls. Neurology 83: 208–214, https://doi.org/10.1212/wnl.0000000000000592.Search in Google Scholar PubMed PubMed Central

Tessa, C., Lucetti, C., Diciotti, S., Paoli, L., Cecchi, P., Giannelli, M., Baldacci, F., Ginestroni, A., Vignali, C., Mascalchi, M., et al.. (2012). Hypoactivation of the primary sensorimotor cortex in de novo Parkinson’s disease: a motor fMRI study under controlled conditions. Neuroradiology 54: 261–268, https://doi.org/10.1007/s00234-011-0955-y.Search in Google Scholar

Tessitore, A., Cirillo, M., and De Micco, R. (2019). Functional connectivity signatures of Parkinson’s disease. J. Park. Dis. 9: 637–652, https://doi.org/10.3233/jpd-191592.Search in Google Scholar

Wai, Y.Y., Wang, J.J., Weng, Y.H., Lin, W.Y., Ma, H.K., Ng, S.H., Wan, Y.L., and Wang, C.H. (2012). Cortical involvement in a gait-related imagery task: comparison between Parkinson’s disease and normal aging. Park. Relat. Disord. 18: 537–542, https://doi.org/10.1016/j.parkreldis.2012.02.004.Search in Google Scholar

Wang, M., Jiang, S., Yuan, Y., Zhang, L., Ding, J., Wang, J., Zhang, J., and Zhang, K. (2016). Alterations of functional and structural connectivity of freezing of gait in Parkinson’s disease. J. Neurol. 263: 1583–1592, https://doi.org/10.1007/s00415-016-8174-4.Search in Google Scholar

Wu, T., Long, X., Wang, L., Hallett, M., Zang, Y., Li, K., and Chan, P. (2011). Functional connectivity of cortical motor areas in the resting state in Parkinson’s disease. Hum. Brain Mapp. 32: 1443–1457, https://doi.org/10.1002/hbm.21118.Search in Google Scholar

Zaidel, A., Arkadir, D., Israel, Z., and Bergman, H. (2009). Akineto-rigid vs. tremor syndromes in Parkinsonism. Curr. Opin. Neurol. 22: 387–393, https://doi.org/10.1097/wco.0b013e32832d9d67.Search in Google Scholar

Zhang, J.R., Feng, T., Hou, Y.N., Chan, P., and Wu, T. (2016). Functional connectivity of vim nucleus in tremor- and akinetic-/rigid-dominant Parkinson’s disease. CNS Neurosci. Ther. 22: 378–386, https://doi.org/10.1111/cns.12512.Search in Google Scholar

Zigmond, M.J., Cameron, J.L., Leak, R.K., Mirnics, K., Russell, V.A., Smeyne, R.J., and Smith, A.D. (2009). Triggering endogenous neuroprotective processes through exercise in models of dopamine deficiency. Park. Relat. Disord. 15 (Suppl. 3): S42–S45, https://doi.org/10.1016/s1353-8020(09)70778-3.Search in Google Scholar

Zigmond, M.J. and Smeyne, R.J. (2014). Exercise: is it a neuroprotective and if so, how does it work? Park. Relat. Disord. 20 (Suppl. 1): S123–S127, https://doi.org/10.1016/s1353-8020(13)70030-0.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/revneuro-2021-0064).


Received: 2021-05-07
Accepted: 2021-07-30
Published Online: 2021-08-30
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2021-0064/html
Scroll to top button