Issue 10, 2021

Arsenic species delay structural ordering during green rust sulfate crystallization from ferrihydrite

Abstract

Green rust (GR) is an Fe(II)–Fe(III)-bearing phase that forms in oxygen-poor and Fe2+-rich subsurface environments where it influences trace element cycling and contaminant dynamics. GR phases have been shown to have high arsenic (As) uptake under anoxic and circum-neutral pH conditions. While geochemical controls on As uptake by GR have been identified, we still lack a fundamental understanding about GR formation in As-contaminated soils and groundwater, as well as the stability of As-bearing GR solids. In this study, we quantified the influence of As(III) and As(V) ([As]initial = 100 μM) on GR sulfate (GRSO4) crystallization during the Fe2+-induced transformation of ferrihydrite (FHY) at pH 8 (As/Fesolid = 0.008, Fe2+(aq)/Fe(III)FHY = 3). We also documented the behavior of mineral-bound As during GRSO4 crystallization and its transformation to magnetite. Our results showed that, compared to the As-free system, adsorbed As species delayed FHY transformation to GRSO4. Moreover, As(III) had a stronger inhibitory effect (at least eight-fold) than As(V) on GRSO4 crystallization, and reduced structural coherence and ordering in As(III)-bearing GRSO4 crystals. During FHY dissolution, we observed an initial release of ∼14 μM As(III) into the aqueous phase, but this was quickly adsorbed by newly-formed GRSO4 crystals. Mineral-bound As(III) resulted in at least four-fold increase in GRSO4 phase stability compared to As(V), and fully prevented its transformation to magnetite even after 720 h. Our results provide new information on the pathways of interaction of common Fe phases exposed to reducing, Fe2+-bearing and As-contaminated fluids and how these affect the structure, morphology and stability of As-bearing GR phases.

Graphical abstract: Arsenic species delay structural ordering during green rust sulfate crystallization from ferrihydrite

Supplementary files

Article information

Article type
Paper
Submitted
22 Apr 2021
Accepted
23 Aug 2021
First published
23 Aug 2021

Environ. Sci.: Nano, 2021,8, 2950-2963

Arsenic species delay structural ordering during green rust sulfate crystallization from ferrihydrite

J. P. H. Perez, D. J. Tobler, H. M. Freeman, A. P. Brown, N. S. Hondow, C. M. van Genuchten and L. G. Benning, Environ. Sci.: Nano, 2021, 8, 2950 DOI: 10.1039/D1EN00384D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements