Skip to main content
Log in

Molecular transport of aliphatic alcohols through expanded polystyrene–polyvinyl alcohol thin films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Expanded polystyrene (EPS) and polyvinyl alcohol (PVA) blend film was prepared by the non-solvent-induced phase separation method. FESEM analysis revealed the porous nature of the polymer membrane. The pore size and density were found to increase with higher loading of PVA. Mechanical testing showed that the incorporation of PVA into the EPS matrix improved Young’s modulus and tensile strength. The wettability of the film was determined by the degree of swelling (DS) and water contact angle measurements. A sharp increase in water absorption capacity and reduction in contact angle were observed for the polymer membrane with higher PVA content. Mass transport behaviour of the as-prepared film was determined using different aliphatic alcohols viz. methanol, ethanol and 2-propanol. The polymer film containing 10% PVA was taken as the optimum blend ratio since it exhibited good permeation capacity and mechanical strength. The selectivity of vapour permeation of the blend film between 2-propanol and acetone was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Pithan F, Staudt-Bickel C, Hess S and Lichtenthaler R N 2002 ChemPhysChem 3 856

    Article  CAS  Google Scholar 

  2. Jahfar M, Sunilkumar M, Sujith A and Unnikrishnan G 2012 J. Elastomers Plast. 44 405

    Article  CAS  Google Scholar 

  3. Cheon S M, Jung B N, Shim J K and Hwang S W 2019 Packag. Technol. Sci. 32 297

    Article  CAS  Google Scholar 

  4. Anusree S, Sujith A, Radhakrishnan C K and Unnikrishnan G 2008 Polym. Eng. Sci. 48 198

    Article  CAS  Google Scholar 

  5. Padmini M, Radhakrishnan C K, Sujith A, Unnikrishnan G and Purushothaman E 2006 J. Appl. Polym. Sci. 101 2884

    Article  CAS  Google Scholar 

  6. Zhang Y, Li H, Li H, Li R and Xiao C 2006 Desalination 192 214

    Article  CAS  Google Scholar 

  7. Chen G Q, Scholes C A, Qiao G G and Kentish S E 2011 J. Membr. Sci. 379 479

    Article  CAS  Google Scholar 

  8. Hopfenberg Η B, Paul D R (eds) 1978 in D R Paul and Seymour Newman Polymer blends (Academic Press Inc.) p 445

  9. Kumari P, Radhakrishnan C K, Unnikrishnan G P, Varghese S and Sujith A 2010 Chem. Eng. Technol. 33 97

    Article  CAS  Google Scholar 

  10. Číhal P, Vopička O, Durďáková T, Budd P M, Harrison W and Friess K 2019 Purif. Technol. 217 206

    Article  CAS  Google Scholar 

  11. Alcohols L A and Tomasz W 2018 Appl. Sci. 8 1

    Google Scholar 

  12. Xianda Y U and Anlai W 1987 Desalination 62 293

    Article  Google Scholar 

  13. Will B and Lichtenthaler R N 1992 J. Membr. Sci. 68 127

    Article  CAS  Google Scholar 

  14. Aouak T, Alghamdi A A, Alrashdi A A, Ouladsmane M, Alam M M, AlOthman Z et al 2016 Sep. Sci. Technol. 51 2440

    Article  CAS  Google Scholar 

  15. Galiano F, Ghanim A H, Rashid K T, Marino T, Simone S and Alsalhy Q F 2019 Clean Technol. Environ. Policy 21 109

    Article  CAS  Google Scholar 

  16. Naidu A, Dinda S, Radhika B, Kasturi G, Kasala P and Penta G 2021 Process Saf. Environ. Prot. 145 312

    Article  CAS  Google Scholar 

  17. Hsu K L 2019 Proceedings of 351th IOP Conference Series: Earth and Environmental Science p 1

  18. Ounkaew A, Kasemsiri P, Kamwilaisak K and Saengprachatanarug K 2018 J. Polym. Environ. 26 3762

    Article  CAS  Google Scholar 

  19. Wang Z, Yan F, Pei H, Li J, Cui Z and He B 2018 Carbohydr. Polym. 198 241

    Article  CAS  Google Scholar 

  20. Ismayil K M M, Manaf O, Sujith A and Antony R 2019 Mater. Lett. 252 321

    Article  CAS  Google Scholar 

  21. Krzywicka A and Megiel E 2020 Nanomaterials 10 1

    Article  CAS  Google Scholar 

  22. Uddin N, Desai F J and Asmatulu E 2020 Energy Ecol. Environ. 5 1

    Article  Google Scholar 

  23. Bischk Eva Maus H E A and Bri H E A 2002 Desalination 148 315

  24. Ismail H, Nordin R, Ahmad Z and Rashid A 2010 Iran. Polym. J. 19 297

    CAS  Google Scholar 

  25. Ibrahim S, Ahmed M E E and Mohamed M Y 2019 J. Clust. Sci. 9 1

    Google Scholar 

  26. Ali F M 2019 J. Mol. Struct. 1189 352

    Article  CAS  Google Scholar 

  27. Spagnol C, Fragal E H, Witt M A, Follmann H D M, Silva R and Rubira A F 2018 Carbohydr. Polym. 191 25

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by UGC-innovative programme and DST-FIST programmes of Nirmalagiri College, Nirmalagiri, Kannur, Kerala, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosy Antony.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salini, N.G., Antony, R. Molecular transport of aliphatic alcohols through expanded polystyrene–polyvinyl alcohol thin films. Bull Mater Sci 44, 236 (2021). https://doi.org/10.1007/s12034-021-02529-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02529-9

Keywords

Navigation