Skip to main content
Log in

Rationally designed f-MWCNT-coated bismuth molybdate (f-MWCNT@BMO) nanocomposites for the voltammetric detection of biomolecule dopamine in biological samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Selective and sensitive dopamine (DPA) sensor was developed using hydrothermally prepared functionalized multi-walled carbon nanotube–coated bismuth molybdate (f-MWCNT@BMO). The f-MWCNT@BMO-reinforced electrode exhibited an outstanding electrocatalytic activity towards DPA oxidation. The nanocomposite-reinforced electrode displayed a rapid response towards DPA sensing and possessed the minimized potential of (Epa + 0.285 V vs Ag/AgCl) in 0.1 M phosphate buffer (PB). The electrochemical results of prepared sensors were analyzed using the differential pulse voltammetry method (DPV). As a result, the f-MWCNT@BMO-reinforced electrode exhibited a widelinear range of 10 nM - 814 μM with a very low detection limit of 3.4 nM towards DPA oxidation. The developed sensor shows excellent selectivity in presence of similar functional group biomolecules. The detection of DPA in real samples was evaluated in human serum, as the results of the proposed sensor possessed good recoveries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Mechanism 1.
Fig. 7

Similar content being viewed by others

References

  1. Matt, S. M., & Gaskill, P. J. (2019) Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. Journal of Neuroimmune Pharmacology, 15(1):114–164.

  2. Yang L, Liu D, Huang J, You T (2014) Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sensors Actuators B Chem 193:166–172

    Article  CAS  Google Scholar 

  3. Sajid M, Baig N, Alhooshani K (2019) Chemically modified electrodes for electrochemical detection of dopamine: challenges and opportunities. TrAC Trends Anal Chem 118:368–385

  4. Ye F, Feng C, Fu N, Wu H, Jiang J, Han S (2015) Application of graphene oxide/lanthanum-modified carbon paste electrode for the selective determination of dopamine. Appl Surf Sci 357:1251–1259

    Article  CAS  Google Scholar 

  5. Vinoth S, Govindasamy M, Wang S-F, Anandaraj S (2020) Layered nanocomposite of zinc sulfide covered reduced graphene oxide and their implications for electrocatalytic applications. Ultrason Sonochem 64:105036

    Article  CAS  PubMed  Google Scholar 

  6. Fayemi OE, Adekunle AS, Ebenso EE (2015) Metal oxide nanoparticles/multi-walled carbon nanotube nanocomposite modified electrode for the detection of dopamine: comparative electrochemical study. J Biosens Bioelectron 6:190

    Article  CAS  Google Scholar 

  7. Sajid M, Nazal MK, Mansha M, Alsharaa A, Jillani SMS, Basheer C (2016) Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review. TrAC Trends Anal Chem 76:15–29

    Article  CAS  Google Scholar 

  8. Li S, Hu S, Jiang W, Zhang J, Xu K, Wang Z (2019) In situ construction of WO3 nanoparticles decorated Bi2MoO6 microspheres for boosting photocatalytic degradation of refractory pollutants. J Colloid Interface Sci 556:335–344

    Article  CAS  PubMed  Google Scholar 

  9. Makiabadi M, Shamspur T, Mostafavi A (2020) Performance improvement of oxygen on the carbon substrate surface for dispersion of cobalt nanoparticles and its effect on hydrogen generation rate via NaBH4 hydrolysis. Int J Hydrog Energy 45(3):1706–1718

    Article  CAS  Google Scholar 

  10. Vinoth S, Govindasamy M, Wang S-F, Al Othman ZA, Alshgari RA, Ouladsmane M (2021) Fabrication of strontium Molybdate incorporated with graphitic carbon nitride composite: high-sensitive amperometric sensing platform of food additive (chloramphenicol) in foodstuffs. Microchem J 167:106307

    Article  CAS  Google Scholar 

  11. Bas SZ (2014) A gold nanoparticle functionalized multiwalled carbon nanotube–poly (o-phenylenediamine) composite film for glucose biosensing applications. Anal Methods 6(19):7752–7759

    Article  CAS  Google Scholar 

  12. Elaiyappillai E, Srinivasan R, Johnbosco Y, Devakumar P, Murugesan K, Kesavan K, Johnson PM (2019) Low cost activated carbon derived from Cucumis melo fruit peel for electrochemical supercapacitor application. Appl Surf Sci 486:527–538

    Article  CAS  Google Scholar 

  13. Naganathan D, Thangamani P, Selvam T, Narayanasamy T (2018) Ce doped ZnO/f-MWCNT moss ball like nanocomposite: a strategy for high responsive current detection of L-tryptophan. Microchim Acta 185(2):1–9

    Article  CAS  Google Scholar 

  14. Manasa G, Bhakta AK, Mekhalif Z, Mascarenhas RJ (2020) Bismuth-nanoparticles decorated multi-wall-carbon-nanotubes cast-coated on carbon paste electrode; an electrochemical sensor for sensitive determination of gallic acid at neutral pH. Mater Sci Energy Technol 3:174–182

    Google Scholar 

  15. Alharbi TM, Al-Antaki AH, Moussa M, Hutchison WD, Raston CL (2019) Three-step-in-one synthesis of supercapacitor MWCNT superparamagnetic magnetite composite material under flow. Nanoscale Adv 1(9):3761–3770

    Article  CAS  Google Scholar 

  16. Huang K-C, Chang Y-H, Chen C-Y, Liu C-Y, Lin L-Y, Vittal R, Wu C-G, Lin K-F, Ho K-C (2011) Improved exchange reaction in an ionic liquid electrolyte of a quasi-solid-state dye-sensitized solar cell by using 15-crown-5-functionalized MWCNT. J Mater Chem 21(45):18467–18474

    Article  CAS  Google Scholar 

  17. Desai MA, Sharma V, Prasad M, Gund G, Jadkar S, Sartale SD (2021) Photoelectrochemical performance of MWCNT–Ag–ZnO ternary hybrid: a study of Ag loading and MWCNT garnishing. J Mater Sci 56(14):8627–8642

    Article  CAS  Google Scholar 

  18. Ye X, Ma J, Hu Y-S, Wei H, Ye F (2016) MWCNT porous microspheres with an efficient 3D conductive network for high performance lithium–sulfur batteries. J Mater Chem A 4(3):775–780

    Article  CAS  Google Scholar 

  19. Lv J, Li C, Feng S, Chen S-M, Ding Y, Chen C, Hao Q, Yang T-H, Lei W (2019) A novel electrochemical sensor for uric acid detection based on PCN/MWCNT. Ionics 25(9):4437–4445

    Article  CAS  Google Scholar 

  20. Guo D, Wu S, Xu X, Niu X, Li X, Li Z, Pan J (2019) A novel label-free hypochlorite amperometric sensor based on target-induced oxidation of benzeneboronic acid pinacol ester. Chem Eng J 373:1–7

    Article  CAS  Google Scholar 

  21. Ulus R, Yıldız Y, Eriş S, Aday B, Şen F, Kaya M (2016) Functionalized multi-walled carbon nanotubes (f-MWCNT) as highly efficient and reusable heterogeneous catalysts for the synthesis of acridinedione derivatives. ChemistrySelect 1(13):3861–3865

    Article  CAS  Google Scholar 

  22. Atieh MA (2011) Effect of functionalized carbon nanotubes with carboxylic functional group on the mechanical and thermal properties of styrene butadiene rubber. Fullerenes Nanotubes Carbon Nanostruct 19(7):617–627

    Article  CAS  Google Scholar 

  23. Atieh MA, Bakather OY, Al-Tawbini B, Bukhari AA, Abuilaiwi FA, Fettouhi MB (2010) Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water. Bioinorg Chem Appl 2010:1–9

    Article  CAS  Google Scholar 

  24. Madrakian T, Maleki S, Heidari M, Afkhami A (2016) An electrochemical sensor for rizatriptan benzoate determination using Fe3O4 nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples. Mater Sci Eng C 63:637–643

    Article  CAS  Google Scholar 

  25. Naik SS, Lee SJ, Theerthagiri J, Yu Y, Choi MY (2021) Rapid and highly selective electrochemical sensor based on ZnS/Au-decorated f-multi-walled carbon nanotube nanocomposites produced via pulsed laser technique for detection of toxic nitro compounds. J Hazard Mater 418:126269

    Article  CAS  PubMed  Google Scholar 

  26. Krishnapandi A, Muthukutty B, Chen S-M, Arul KT, Shiuan HJ, Selvaganapathy M (2021) Bismuth molybdate incorporated functionalized carbon nanofiber as an electrocatalytic tool for the pinpoint detection of organic pollutant in life samples. Ecotoxicol Environ Saf 209:111828

    Article  CAS  PubMed  Google Scholar 

  27. Yu H, Jiang L, Wang H, Huang B, Yuan X, Huang J, Zhang J, Zeng G (2019) Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: a critical review. Small 15(23):1901008

    Article  CAS  Google Scholar 

  28. Hao Y, Dong X, Zhai S, Wang X, Ma H, Zhang X (2016) Towards understanding the photocatalytic activity enhancement of ordered mesoporous Bi2MoO6 crystals prepared via a novel vacuum-assisted nanocasting method. RSC Adv 6(42):35709–35718

    Article  CAS  Google Scholar 

  29. He Q, Ni Y, Ye S (2017) Heterostructured Bi2O3/Bi2MoO6 nanocomposites: simple construction and enhanced visible-light photocatalytic performance. RSC Adv 7(43):27089–27099

    Article  CAS  Google Scholar 

  30. Khazraei A, Tarlani A, Eslami-Moghadam M, Muzart J (2021) New Bi2MoO6 nano-shapes toward ultrasensitive enzymeless glucose tracing: synergetic effect of the Bi-Mo association. Talanta 221:121560

    Article  CAS  PubMed  Google Scholar 

  31. Dai K, Li D, Geng L, Liang C, Liu Q (2015) Facile preparation of Bi2MoO6/multi-walled carbon nanotube nanocomposite for enhancing photocatalytic performance. Mater Lett 160:124–127

    Article  CAS  Google Scholar 

  32. Phuruangrat A, Ekthammathat N, Kuntalue B, Dumrongrojthanath P, Thongtem S, Thongtem T (2014) Hydrothermal synthesis, characterization, and optical properties of Ce doped Bi2MoO6 nanoplates. J Nanomater 2014:934165

    Google Scholar 

  33. Schuh K, Kleist W, Høj M, Trouillet V, Beato P, Jensen AD, Grunwaldt J-D (2015) Bismuth molybdate catalysts prepared by mild hydrothermal synthesis: influence of pH on the selective oxidation of propylene. Catalysts 5(3):1554–1573

    Article  CAS  Google Scholar 

  34. Jiang J, Ding D, Wang J, Lin X, Diao G (2021) Three-dimensional nitrogen-doped graphene-based metal-free electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, uric acid, and acetaminophen. Analyst 146(3):964–970

    Article  CAS  PubMed  Google Scholar 

  35. Feng S, Yu L, Yan M, Ye J, Huang J, Yang X (2021) Holey nitrogen-doped graphene aerogel for simultaneously electrochemical determination of ascorbic acid, dopamine and uric acid. Talanta 224:121851

    Article  CAS  PubMed  Google Scholar 

  36. Yin B, Zhai HL, Zhao BQ, Bi KX, Mi JY (2021) Chemometrics-assisted simultaneous voltammetric determination of multiple neurotransmitters in human serum. Bioelectrochemi. 139:107739

    Article  CAS  Google Scholar 

  37. Amisha K, Gajendar S, Manu S (2021) Designing of cerium phosphate nanorods decorated reduced graphene oxide nanostructures as modified electrode: an effective mode of dopamine sensing. Microchem J 166:106224

    Article  CAS  Google Scholar 

  38. Zhang B, Zhang J, Lin Y, Liu M, Fang G, Wang S (2020) Coral-like Au1Pt3 alloy nanoparticles with multiple surface defects modified by poly (L-methionine) membrane for the selective detection of dopamine in biological samples. J Alloys Compd 815:152643

    Article  CAS  Google Scholar 

  39. Ouyang H, Li W, Long Y (2021) Carbon-doped h-BN for the enhanced electrochemical determination of dopamine. Electrochim Acta 369:137682

    Article  CAS  Google Scholar 

  40. Butler D, Moore D, Glavin NR, Robinson JA, Ebrahimi A (2021) Facile post-deposition annealing of graphene ink enables ultrasensitive electrochemical detection of dopamine. ACS Appl Mater Interfaces 13(9):11185–11194

    Article  CAS  PubMed  Google Scholar 

  41. Wang Z, Guo H, Gui R, Jin H, Xia J, Zhang F (2018) Simultaneous and selective measurement of dopamine and uric acid using glassy carbon electrodes modified with a complex of gold nanoparticles and multiwall carbon nanotubes. Sensors Actuators B Chem 255:2069–2077

    Article  CAS  Google Scholar 

  42. Caetano FR, Felippe LB, Zarbin AJ, Bergamini MF, Marcolino-Junior LH (2017) Gold nanoparticles supported on multi-walled carbon nanotubes produced by biphasic modified method and dopamine sensing application. Sensors Actuators B Chem 243:43–50

    Article  CAS  Google Scholar 

  43. Thakur N, Chaturvedi A, Mandal D, Nagaiah TC (2020) Ultrasensitive and highly selective detection of dopamine by a NiFeP based flexible electrochemical sensor. Chem Commun 56(60):8448–8451

    Article  CAS  Google Scholar 

  44. Huang Q, Lin X, Tong L, Tong Q-X (2020) Graphene quantum dots/multiwalled carbon nanotubes composite-based electrochemical sensor for detecting dopamine release from living cells. ACS Sustain Chem Eng 8(3):1644–1650

    Article  Google Scholar 

  45. Filik H, Avan AA, Aydar S (2016) Simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan with azure A-interlinked multi-walled carbon nanotube/gold nanoparticles composite modified electrode. Arab J Chem 9(3):471–480

    Article  CAS  Google Scholar 

  46. Thakur N, Das Adhikary S, Kumar M, Mehta D, Padhan AK, Mandal D, Nagaiah TC (2018) Ultrasensitive and highly selective electrochemical detection of dopamine using poly (ionic liquids)–cobalt polyoxometalate/CNT composite. ACS Omega 3(3):2966–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program. The author appreciated Taif University Researchers Supporting Project number TURSP-2020/267, Taif University, Taif, Saudi Arabia.

Funding

This project was supported by the Ministry of Science and Technology (MOST 110-2113-M-027 -003), Taiwan (ROC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3.05 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maheshwaran, ., Tamilalagan, E., Chen, SM. et al. Rationally designed f-MWCNT-coated bismuth molybdate (f-MWCNT@BMO) nanocomposites for the voltammetric detection of biomolecule dopamine in biological samples. Microchim Acta 188, 315 (2021). https://doi.org/10.1007/s00604-021-04978-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04978-9

Keywords

Navigation