Skip to main content
Log in

Multiphysics Modeling of Thermal Behavior of Commercial Pure Titanium Powder During Selective Laser Melting

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A mesoscopic simulation based on random packing powder bed model was established to study the heat behavior of CP-Ti during selective laser melting. The characteristics of the molten pool under the interaction of laser and powder, and the influence of laser power on the thermal behavior, hydrodynamics and surface morphology evolution of the molten pool were studied. The results show that with the increase of laser power, the maximum temperature, temperature change rate, lifetime of molten pool and size are greatly improved. In addition, the characteristics and heat behavior of the molten pool under the double track are mainly studied in this study. It is found that the maximum temperature, lifetime, and the length and width of the molten pool of the second track are higher than those in the first, and with the increase of laser power, the length width ratio of the second track in molten pool becomes larger.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AM:

Additive manufacturing

CFD:

Computational fluid dynamics

CP-Ti:

Commercial pure titanium

c p :

Specific heat (J/(kg\(\cdot\)K))

DEM:

Discrete element method

\(\frac{d\gamma }{{dT}}\) :

Coefficient of surface tension

E* :

Young's modulus

E i , E j :

Young's modulus

e:

The coefficient of recovery

F t :

Tangential force

F :

Volume fraction of fluid

F n :

Normal force

\(F_{n}^{d}\) :

Damping force

\(F_{{\text{t}}}^{d}\) :

Tangential damping

FVM:

Finite volume method

f :

Volume fraction of liquid

\(\vec{g}\) :

Gravitational acceleration (m/s2)

G* :

Current shear modulus

h :

Enthalpy

k:

Thermal conduction (w/(mK))

L f :

Latent heat of melting

m*:

Equivalent mass

M :

The molar mass

P o :

Saturation pressure

P laser :

Laser power (w)

p r :

The recoil pressure (pa)

P :

Pressure (pa)

q laser :

Laser energy density

\(\dot{q}\) :

The heat source term

R g :

General gas constant

R :

Focus diameter of the laser beam (μm)

R* :

Equivalent radius

Ri, R j :

Radius of contact sphere

S n :

Normal stiffness

S t :

The tangential stiffness

SLM:

Selective laser melting

T L :

The liquidus temperature

T b :

The boiling temperature (k)

T S :

The solidus temperature (K)

T :

Temperature (K)

T m :

Melting temperature (K)

t :

Time (s)

\(v_{t}^{{\overrightarrow {rel} }}\) :

Tangential component of the relative velocity

\(v_{t}^{{\overrightarrow {rel} }}\) :

Current shear modulus

v i, v j :

Poisson's ratio

VOF:

Volume of Fluid

\(v_{n}^{{\overrightarrow {rel} }}\) :

Normal component of the relative velocity

\(\vec{v}\) :

Velocity vector(m/s)

Vs :

Laser scanning speed(mm/s)

(x 0, y 0):

The initial position of the laser

\(\gamma\) :

Surface tension

\(\delta_{n}\) :

Normal overlap

\(\eta\) :

Laser absorptivity of the material

\(\mu\) :

Dynamic viscosity (kg/(ms))

\(\mu_{r}\) :

Rolling friction coefficient

\(\mu_{s}\) :

Static friction coefficient

\(\rho\) :

Density (kg/m3)

\(\Delta H_{v}\) :

The latent heat of evaporation (J/kg)

\(\omega_{i}\) :

Unit angular velocity vector

References

  1. D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, T. Kokubo, Acta Biomater. 7, 1398 (2011)

    Google Scholar 

  2. A.K. Patnaik, N. Poondla, C.C. Menzemer, T.S. Srivatsan, Mater. Sci. Eng. A 590, 390 (2014)

    Google Scholar 

  3. D.D. Gu, Y.C. Hagedorn, W. Meiners, G.B. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Acta Mater. 60, 3849 (2012)

    Google Scholar 

  4. H. Attar, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Mater. Sci. Eng. A 593, 170 (2014)

    Google Scholar 

  5. J. Shen, B. Chen, J. Umeda, K. Kondoh, Mater. Sci. Eng. A 716, 1 (2018)

    Google Scholar 

  6. E. Santos, K. Osakada, M. Shiomi, M. Morita, F. Abe, Fabrication of titanium dental implants by selective laser melting. in Proceedings of the 5th International Symposium on Laser Precision Microfabrication, Nara, 11–14 May 2004

  7. C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers, JOM 60, 46 (2008)

    Google Scholar 

  8. J.-P. Kruth, G. Levy, F. Klocke, T.H.C. Child, CIRP Ann.-Manuf. Techn. 56, 730 (2007)

    Google Scholar 

  9. D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57, 133 (2012)

    Google Scholar 

  10. ​T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92, 112 (2018)

    Google Scholar 

  11. D.D. Gu, H.Q. Wang, G.Q. Zhang, Metall Mater. Trans. A 45, 464 (2014)

    Google Scholar 

  12. M. Das, V.K. Balla, D. Basu, S. Bose, A. Bandyopadhyay, Scripta Mater. 63, 438 (2010)

    Google Scholar 

  13. X.P. Li, J. Van Humbeeck, J.P. Kruth, Mater. Design 116, 352 (2017)

    Google Scholar 

  14. N. Jeyaprakash, C.-H. Yang, K.R. Ramkumar, Met. Mater. Int. (2021). https://doi.org/10.1007/s12540-020-00933-0

    Article  Google Scholar 

  15. Y. Li, D. Gu, Addit. Manuf. 1–4, 99 (2014)

    Google Scholar 

  16. P. Lu, M. Wu, X. Liu, W. Duan, J. Han, Met. Mater. Int. 26, 1182 (2020)

    Google Scholar 

  17. B. Schoinochoritis, D. Chantzis, K. Salonitis, P. I. Mech. Eng. B J. Eng. 231, 96 (2014)

    Google Scholar 

  18. G.M. Karthik, H.S. Kim, Met. Mater. Int. 27, 1 (2021)

    Google Scholar 

  19. W.J. Sames, K.A. Unocic, R.R. Dehof, T. Lolla, S.S. Babu, J. Mater. Res. 29, 1920 (2014)

    Google Scholar 

  20. P.S. Cook, A.B. Murphy, Addit. Manuf. 31, 100909 (2020)

    Google Scholar 

  21. A. Raghavan, H.L. Wei, T.A. Palmer, T. DebRoy, J. Laser. Appl. 25, 052006 (2013)

    Google Scholar 

  22. C.-J. Li, T.-W. Tsai, C.-C. Tseng, Phys. Procedia 83, 1444 (2016)

    Google Scholar 

  23. C. Panwisawas, C.L. Qiu, Y. Sovani, J.W. Brooks, M.M. Attallah, H.C. Basoalto, Scripta Mater. 105, 14 (2015)

    Google Scholar 

  24. M. Markl, C. Körner, Annu. Rev. Mater. Res. 46, 93 (2016)

    Google Scholar 

  25. E.J.R. Parteli, T. Pöschel, Powder Technol. 288, 96 (2016)

    Google Scholar 

  26. Y.S. Lee, W. Zhang, Modeling of heat transfer, Addit. Manuf. 12, 178 (2016)

    Google Scholar 

  27. I. Kovaleva, O. Kovalev, I. Smurov, Phys. Procedia 56, 400 (2014)

    Google Scholar 

  28. Y.S. Lee, W. Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing. in Proceedings of 26th Solid Freeform Fabrication Symposium, Austin, 10-12 ​August 2015

  29. W. Yan, W. Ge, Y. Qian, S. Lin, B. Zhou, W.K. Liu, Acta Mater. 134, 324 (2017)

    Google Scholar 

  30. I. Yadroitsev, A. Gusarov, I. Yadroitsava, I. Smurov, J. Mater. Process. Tech. 210, 1624 (2010)

    Google Scholar 

  31. L. Cao, Int. J. Heat Mass Tran. 141, 1036 (2019)

    Google Scholar 

  32. Y. Li, D. Gu, Mater. Design 63, 856 (2014)

    Google Scholar 

  33. S. Liu, J. Zhu, H. Zhu, J. Yin, C. Chen, X. Zeng, Opt. Laser Technol. 123, 105924 (2020)

    Google Scholar 

  34. Z. Wang, W. Yan, W.K. Liu, M. Liu, Comput. Mech. 63, 649 (2019)

    Google Scholar 

  35. C.W. Hirt, B.D. Nichols, J. Comput. Phys. 39, 201 (1981)

    Google Scholar 

  36. EDEM, User Guide, DEM Solutions Ltd., Edinburgh, Scotland, UK. Copyright © (2011). http://tm.spbstu.ru/images/2/28/EDEM2.4_user_guide.pdf. Accessed 25 Aug 2021

  37. Y. Hu, J. Li, J. Mater. Process. Tech. 249, 426 (2017)

    Google Scholar 

  38. H. Hertz, J. Reine Angew. Math. 92, 156 (1881)

  39. R.D. Mindlin, J. Appl. Mech. 16, 259 (1949)

    Google Scholar 

  40. R.D. Mindlin, H. Deresiewicz, J. Appl. Mech. 20, 327 (1953)

    Google Scholar 

  41. Y. Tsuji, T. Tanaka, T. Ishida, Powder Technol. 71, 239 (1992)

    Google Scholar 

  42. P.A. Cundall, O.D.L. Strack, Géotechnique 30, 331 (1980)

    Google Scholar 

  43. H. Sakaguchi, E. Ozaki, T. Igarashi, Int. J. Mod. Phys. B 7, 1949 (1993)

  44. Flow3D: Version 11 0.1.2: User Manual, Flow Science, Santa Fe, NM, USA, (2014)

  45. S. Kolossov, E. Boillat, R. Glardon, P. Fischer, M. Locher, Int. J. Mach. Tool. Manu. 44, 117 (2004)

    Google Scholar 

  46. V.R. Voller, A.D. Brent, C. Prakash, Int. J. Heat Mass Tran. 32, 1719 (1989)

    Google Scholar 

  47. Y.-C. Wu, C.-H. San, C.-H. Chang, H.-J. Lin, R. Marwan, S. Baba, W.-S. Hwang, J. Mater. Process. Tech. 254, 72 (2018)

    Google Scholar 

  48. B. Cheng, X. Li, C. Tuile, A. Ilin, H. Willeck, U. Hartel, Multi-physics modeling of single-track scanning in selective laser melting: powder compaction effect. in Proceedings of 29th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, Austin, 13–15 ​August 2018

  49. B. Liu, G. Fang, L. Lei, W. Liu, Appl. Math. Model. 79, 506 (2020)

    Google Scholar 

  50. S. Lee, J. Kim, J. Choe, S.-W. Kim, J.-K. Hong, Y.S. Choi, Met. Mater. Int. 27, 78 (2021)

  51. S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Acta Mater. 108, 36 (2016)

    Google Scholar 

  52. K. Dai, L. Shaw, Acta Mater. 53, 4743 (2005)

  53. L. Cao, Comp. Mater. Sci. 179, 109686 (2020)

    Google Scholar 

  54. W. Yuan, H. Chen, T. Cheng, Q. Wei, Mater. Design 189, 108542 (2020)

    Google Scholar 

  55. S.A. Khairallah, A. Anderson, J. Mater. Process. Tech. 214, 2627 (2014)

    Google Scholar 

  56. R. Li, J. Liu, Y. Shi, L. Wang, W. Jiang, Int. J. Adv. Manuf. Tech. 59, 1025 (2012)

    Google Scholar 

  57. D. Dai, D. Gu, Int. J. Mach. Tool. Manu. 100, 14 (2016)

  58. A. Simchi, H. Pohl, Mater. Sci. Eng. A 359, 119 (2003)

    Google Scholar 

Download references

Acknowledgement

The authors are grateful for the travel support from the Department of international Affairs at Nanchang University, and the financial grants from the National Natural Science Foundation of China (11562011 and 51566012), Natural Science Foundation of Jiangxi Provence of China (20181BAB206031), 2018 Jiangxi Province Graduate Student Innovation Special Fund Project(YC2018-B004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, W., Bao, J., Lei, J. et al. Multiphysics Modeling of Thermal Behavior of Commercial Pure Titanium Powder During Selective Laser Melting. Met. Mater. Int. 28, 282–296 (2022). https://doi.org/10.1007/s12540-021-01019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01019-1

Keywords

Navigation