Skip to main content
Log in

Modeling the motion of a bright spot in jets from black holes M87* and SgrA*

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the general relativistic motion of a bright spot in a jet from an accreting black hole. The corresponding lensed images of the moving bright spot are calculated numerically in discrete time intervals along the bright spot trajectory in the Kerr space-time framework. As representative examples, we consider the cases of supermassive black holes SgrA* and M87*. Astrophysical observations of the moving bright spots in the jets from black holes provides the unique possibility for the verification of different gravitation theories in the strong field limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rees, M.J.: Relativistic jets and beams in radio galaxies. Nature 275, 516–517 (1978)

    Article  ADS  Google Scholar 

  2. Rees, M.J.: The M87 jet: internal shocks in a plasma beam? Mon. Not. R. Astron. Soc. 184, 61P-65P (1978)

    Article  ADS  Google Scholar 

  3. Eichler, D., Smith, M.: Why is M87 jet one sided in appearance? Nature 303, 779–781 (1983)

    Article  ADS  Google Scholar 

  4. Rees, M.J.: Black hole models for active galactic nuclei. Annu. Rev. Astron. Astrophys. 22, 471–506 (1984)

    Article  ADS  Google Scholar 

  5. Begelman, M.C., Blandford, R.D., Rees, M.J.: Theory of extragalactic radio sources. Rev. Mod. Phys. 56(255), 255–351 (1984)

    Article  ADS  Google Scholar 

  6. Stiavelli, M., Biretta, J., Møller, P., Zeilinger, W.W.: Optical counterpart of the east radio lobe of M87. Nature 355, 802–804 (1992)

    Article  ADS  Google Scholar 

  7. Junor, W., Biretta, J.A.: The radio jet in 3C274 at 0.01 pc resolution. Astron. J. 109, 500–506 (1995)

    Article  ADS  Google Scholar 

  8. Junor, W., Biretta, J.A., Livio, M.: Formation of the radio jet in M87 at 100 Schwarzschild radii from the central black hole. Nature 401, 891–892 (1999)

    Article  ADS  Google Scholar 

  9. Di Matteo, T., Allen, S.W., Fabian, A.C., Wilson, A.S., Young, A.J.: Accretion onto the supermassive black hole in M87. Astrophys. J. 582, 133–140 (2003)

    Article  ADS  Google Scholar 

  10. Kovalev, Y.Y., Lister, M.L., Homan, D.C., Kellermann, K.I.: The inner jet of the radio galaxy M87. Astrophys. J. 668, L27–L30 (2007)

    Article  ADS  Google Scholar 

  11. Hada, K., Doi, A., Kino, M., Nagai, H., Hagiwara, Y., Kawaguchi, N.: An origin of the radio jet in M87 at the location of the central black hole. Nature 477, 185–187 (2011)

    Article  ADS  Google Scholar 

  12. de Gasperin, F., et al.: M 87 at metre wavelengths: the LOFAR picture. Astron. Astrophys. 547, A56 (2012)

    Article  Google Scholar 

  13. Mościbrodzka, M., Falcke, H., Shiokawa, H.: General relativistic magnetohydrodynamical simulations of the jet in M 87. Astron. Astrophys. 586, A38 (2016)

    Article  ADS  Google Scholar 

  14. Doeleman, S.S., et al.: Jet-launching structure resolved near the supermassive black hole in M87. Science 338, 355–358 (2012)

    Article  ADS  Google Scholar 

  15. Broderick, A.E., Narayan, R., Kormendy, J., Perlman, E.S., Rieke, M.J., Doeleman, S.S.: The event horizon of M87. Astrophys. J. 805, 179 (2015)

    Article  ADS  Google Scholar 

  16. Lacroix, T., Karami, M., Broderick, A.E., Silk, J., Bæhm, C.: Unique probe of dark matter in the core of M87 with the Event Horizon Telescope. Phys. Rev. D 96, 063008 (2015)

    Article  ADS  Google Scholar 

  17. Akiyama, K., et al.: Imaging the Schwarzschild-radius-scale structure of M87 with the Event Horizon Telescope using sparse modeling. Astrophys. J. 838, 1 (2017)

    Article  ADS  Google Scholar 

  18. Kawashima T., Toma K., Kino M., Akiyama K., Nakamura M., Moriyama K.: A jet-bases emission model of the EHT 2017 image of M87*. arXiv:2009.08641 (2020)

  19. Rieger, F.M., Mannheim, K.: Particle acceleration by rotating magnetospheres in active galactic nuclei. Astron. Astrophys. 353, 473–478 (2000)

    ADS  Google Scholar 

  20. Richards, J.L., et al.: Blazars in the Fermi era: the OVRO 40 m telescope monitoring program. Astrophys. J. Suppl. 194, 29 (2011)

    Article  ADS  Google Scholar 

  21. Pushkarev, A.B., Kovalev, Y.Y.: Single-epoch VLBI imaging study of bright active galactic nuclei at 2 GHz and 8 GHz. Astron. Astrophys. 544, A34 (2012)

    Article  ADS  Google Scholar 

  22. Pushkarev, A.B., Kovalev, Y.Y., Lister, M.L., Savolainen, T.: MOJAVE - XIV. Shapes and opening angles of AGN jets. Mon. Not. R. Astron. Soc. 468, 4992–5003 (2017)

    Article  ADS  Google Scholar 

  23. Plavin, A.V., Kovalev, Y.Y., Pushkarev, A.B., Lobanov, A.P.: Significant core shift variability in parsec-scale jets of active galactic nuclei. Mon. Not. R. Astron. Soc. 485, 1822–1842 (2019)

    Article  ADS  Google Scholar 

  24. Valverde, J., et al.: A decade of multi-wavelength observations of the TeV blazar 1ES 1215+303: Extreme shift of the synchrotron peak frequency and long-term optical-gamma-ray flux increase. Astrophys. J. 891, 170 (2020)

    Article  ADS  Google Scholar 

  25. Plavin, A., Kovalev, Y.Y., Kovalev, Yu.A., Troitsky, S.: Observational evidence for the origin of high-energy neutrinos in parsec-scale nuclei of radio-bright active galaxies. Astrophys. J. 894, 101 (2020)

    Article  ADS  Google Scholar 

  26. Popkov, A.V., Kovalev, Y.Y., Petrov, L.Y., Kovalev, Yu.A.: Parsec-scale properties of steep and flat spectrum extragalactic radio sources from a VLBA survey of a complete north polar cap sample. arXiv:2008.06803 (2020)

  27. Kovalev, Y.Y., Pushkarev, A.B., Nokhrina, E.E., Plavin, A.V., Beskin, V.S., Chernoglazov, A.V., Lister, M.L., Savolainen, T.: A transition from parabolic to conical shape as a common effect in nearby AGN jets. Mon. Not. R. Astron. Soc. 495, 3576–3591 (2020)

    Article  ADS  Google Scholar 

  28. Nokhrina, E.E., Kovalev, Y.Y., Pushkarev, A.B.: Physical parameters of active galactic nuclei derived from properties of the jet geometry transition region. Mon. Not. R. Astron. Soc. 498, 2532–2543 (2020)

    Article  ADS  Google Scholar 

  29. Plavin, A., Kovalev, Y.Y., Kovalev, Y.A., Troitsky, S.V.: Observational evidence for the origin of high-energy neutrinos in parsec-scale nuclei of radio-bright active galaxies. Astrophys. J. 894, 101 (2020)

    Article  ADS  Google Scholar 

  30. Plavin, A.V., Kovalev, Y.Y., Kovalev, Y.A., Troitsky, S.V.: Directional association of TeV to PeV astrophysical neutrinos with active galaxies hosting compact radio jets. arXiv:2009.08914 (2020)

  31. De Villiers, J.-P., Staff, J., Ouyed, R.: GRMHD simulations of disk/jet systems: application to the inner engines of collapsars. arXiv:astro-ph/0502225 (2005)

  32. Tchekhovskoy, A., Narayan, R., McKinney, J.C.: Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 418, L79–L83 (2011)

    Article  ADS  Google Scholar 

  33. Tchekhovskoy, A., McKinney, J.C., Narayan, R.: General relativistic modeling of magnetized jets from accreting black holes. J. Phys. Conf. Ser. 372, 012040 (2012)

    Article  Google Scholar 

  34. McKinney, J.C., Tchekhovskoy, A., Blandford, R.D.: General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. R. Astron. Soc. 423, 3083–3117 (2012)

    Article  ADS  Google Scholar 

  35. Ressler, S.M., Tchekhovskoy, A., Quataert, E., Chandra, M., Gammie, C.F.: Electron thermodynamics in GRMHD simulations of low-luminosity black hole accretion. Mon. Not. R. Astron. Soc. 454, 1848–1870 (2015)

    Article  ADS  Google Scholar 

  36. Ressler, S.M., Tchekhovskoy, A., Quataert, E., Gammie, C.F.: The disc-jet symbiosis emerges: modeling the emission of Sagittarius A* with electron thermodynamics. Mon. Not. R. Astron. Soc. 467, 3604–3619 (2017)

    Article  ADS  Google Scholar 

  37. Foucart, F., Chandra, M., Gammie, C.F., Quataert, E., Tchekhovskoy, A.: How important is non-ideal physics in simulations of sub-Eddington accretion onto spinning black holes? Mon. Not. R. Astron. Soc. 470, 2240–2252 (2017)

    Article  ADS  Google Scholar 

  38. Ryan, B.R., Ressler, S.M., Dolence, J.C., Gammie, C., Quataert, E.: Two-temperature GRRMHD simulations of M87. Astrophys. J. 864, 126 (2018)

    Article  ADS  Google Scholar 

  39. Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977)

    Article  ADS  Google Scholar 

  40. Beskin, V.S.: MHD flows in compact astrophysical objects: accretion, winds and jets, p. 425. Extraterrestrial Physics & Space Sciences. Springer, Berlin (2010)

  41. Beskin, V.S.: Magnetohydrodynamic models of astrophysical jets. Phys. Usp. 53, 1199–1233 (2010)

    Article  ADS  Google Scholar 

  42. Toma, K., Takahara, F.: Causal production of the electromagnetic energy flux and role of the negative energies in Blandford-Znajek process. Progr. Theor. Exp. Phys. 2016, 063E01 (2016)

    Article  Google Scholar 

  43. Cunningham, C.T., Bardeen, J.M.: The optical appearance of a star orbiting an extreme Kerr black hole. Astrophys. J. 173, L137–L142 (1972)

    Article  ADS  Google Scholar 

  44. Cunningham, C.T., Bardeen, J.M.: The optical appearance of a star orbiting an extreme Kerr black hole. Astrophys. J. 183, 237–264 (1973)

    Article  ADS  Google Scholar 

  45. Viergutz, S.U.: Image generation in Kerr geometry. I. Analytical investigations on the stationary emitter-observer problem. Astron. Astrophys. 272, 353–377 (1993)

    ADS  MathSciNet  Google Scholar 

  46. Rauch, K.P., Blandford, R.D.: Optical caustics in a Kerr spacetime and the origin of rapid X-ray variability in Active Galactic Nuclei. Astrophys J. 421, 46–68 (1994)

    Article  ADS  Google Scholar 

  47. Gralla, S.E., Holz, D.E., Wald, R.M.: Black hole shadows, photon rings, and lensing rings. Phys. Rev. D 100, 024018 (2019)

    Article  ADS  Google Scholar 

  48. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Chapter 7, Clarendon Press, Oxford (1983)

  50. Boyer, R.H., Lindquist, R.W.: Maximal analytic extension of the Kerr metric. J. Math. Phys. 8, 265–281 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968)

    Article  ADS  MATH  Google Scholar 

  52. De Felice, F.: Equatorial geodesic motion in the gravitational field of a rotating source. Nuovo C. B 57, 351–388 (1968)

    Article  ADS  Google Scholar 

  53. Bardeen, J.M.: Stability of circular orbits in stationary, axisymmetric space-times. Astrophys. J. 161, 103–109 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  54. Bardeen, J.M.: A variational principle for rotating stars in general relativity. Astrophys. J. 162, 71–95 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  55. Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347–370 (1972)

    Article  ADS  Google Scholar 

  56. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W H Freeman, San Francisco (1973)

    Google Scholar 

  57. Dokuchaev, V.I., Nazarova, N.O.: The Brightest point in accretion disk and black hole spin: implication to the image of black hole M87*. Universe 5, 183 (2019)

    Article  ADS  Google Scholar 

  58. Dokuchaev, V.I.: To see invisible: image of the event horizon within the black hole shadow. Int. J. Mod. Phys. D 28, 1941005 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  59. Dokuchaev, V.I., Nazarova, N.O.: Silhouettes of invisible black holes. Phys. Usp. 63, 583–600 (2020)

    Article  ADS  Google Scholar 

  60. Dokuchaev, V.I., Nazarova, N.O.: Visible shapes of black holes M87* and SgrA*. Universe 6, 154 (2020)

    Article  ADS  Google Scholar 

  61. The Event Horizon Telescope Collaboration: First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. 875, L1 (2019)

  62. The Event Horizon Telescope Collaboration: First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. 875, L2 (2019)

  63. The Event Horizon Telescope Collaboration: First M87 Event First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. 875, L3 (2019)

  64. The Event Horizon Telescope Collaboration: First M87 Event First First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. 875, L4 (2019)

  65. The Event Horizon Telescope Collaboration: First M87 Event First First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. 875, L5 (2019)

  66. The Event Horizon Telescope Collaboration: First M87 Event First First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. 875, L5 (2019)

  67. Walker, R.C., Hardee, P.E., Davies, F.B., Ly, C., Junor, W.: The Structure and dynamics of the sub-parsec scale jet in M87 based on 50 VLBA observations over 17 years at 43 GHz. Astrophys. J. 855, 128 (2018)

    Article  ADS  Google Scholar 

  68. Nalewajko, K., Sikora, M., Rózànskà, A.: Orientation of the crescent image of M 87*. Astron. Astrophys. 634, A38 (2020)

    Article  ADS  Google Scholar 

  69. Dokuchaev, V.I., Nazarova, N.O.: Motion of bright spot in jet from black hole viewed by a distant observer. https://youtu.be/7j8f_vlTul8 (2020)

  70. Bardeen, J.M.: Timelike and null geodesics in the Kerr metric. In: DeWitt, C., DeWitt, B.S. (eds.) Black Holes, pp. 217–239. Gordon and Breach, New York (1973)

    Google Scholar 

  71. Dokuchaev, V.I., Nazarova, N.O.: Gravitational lensing of a star by a rotating black hole. JETP Lett. 106, 637–642 (2017)

    Article  ADS  Google Scholar 

  72. Dokuchaev, V.I., Nazarova, N.O., Smirnov, V.P.: Event horizon silhouette: implications to supermassive black holes in the galaxies M87 and Milky Way. Gen. Relativ. Gravit. 51, 81 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Dokuchaev, V.I., Nazarova, N.O.: Event Horizon Image within Black Hole Shadow. J. Exp. Theor. Phys. 128, 578–585 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Russian Foundation for Basic Research Grant 18-52-15001a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav I. Dokuchaev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

We describe here some mathematical details and physical approaches for our numerical calculations of the bright spot motion along the black hole rotation axes.

1.1 A.1 Locally non-rotating frames

The most physically appropriate coordinate frame for Kerr black hole is a so-called Locally Non-Rotating Frames (LNRF) [53, 55]. The orthonormal tetrad

(7)

relates the Boyer–Lindquist coordinates \((t,r,\theta ,\phi )\) with the similar ones for physical observers in the LNRF:

$$\begin{aligned} \mathbf{e }_{(t)}\!=\! & {} e^{-\nu }\left( \frac{\partial }{\partial t} \!+\!\omega \frac{\partial }{\partial \varphi }\right) \!=\! \left( \frac{A}{\Sigma \Delta }\right) ^{1/2}\!\frac{\partial }{\partial t}\!+\! \frac{2Mat}{(A\Sigma \Delta )^{1/2}}\frac{\partial }{\partial \varphi }, \nonumber \\ \mathbf{e }_{(r)}= & {} e^{-\mu _1}\frac{\partial }{\partial r} = \left( \frac{\Delta }{\Sigma }\right) ^{1/2}\frac{\partial }{\partial r}, \nonumber \\ \mathbf{e }_{(\theta )}= & {} e^{-\mu _2}\frac{\partial }{\partial \theta } = \frac{1}{\Sigma ^{1/2}}\frac{\partial }{\partial \theta }, \nonumber \\ \mathbf{e }_{(\varphi )}= & {} e^{-\psi }\frac{\partial }{\partial \varphi } = \left( \frac{\Sigma }{A}\right) ^{1/2}\!\frac{1}{\sin \theta } \frac{\partial }{\partial \varphi }. \end{aligned}$$
(8)

The related basis differential 1-forms for LNRF are

$$\begin{aligned} \mathbf{e }^{(t)}= & {} e^{\nu }\mathbf{d }t= \left( \frac{\Sigma \Delta }{A}\right) ^{1/2}\!\mathbf{d }t, \end{aligned}$$
(9)
$$\begin{aligned} \mathbf{e }^{(r)}= & {} e^{\mu _1}\mathbf{d }t= \left( \frac{\Sigma }{\Delta }\right) ^{1/2}\!\mathbf{d }r, \end{aligned}$$
(10)
$$\begin{aligned} \mathbf{e }^{(\theta )}= & {} e^{\mu _2}\mathbf{d }t= \Sigma ^{1/2}\,\mathbf{d }\theta , \end{aligned}$$
(11)
$$\begin{aligned} \mathbf{e }^{(\varphi )}= & {} -\omega e^{\psi }\mathbf{d }t+e^{\psi }\mathbf{d }\varphi =-\frac{2Mar\sin \theta }{(\Sigma A)^{1/2}}\,\mathbf{d }t+ \left( \frac{A}{\Sigma }\right) ^{1/2}\!\!\sin \theta \,\mathbf{d }\varphi . \end{aligned}$$
(12)

1.2 A.2 Equations of motion for test particles

Brandon Carter [49, 51, 55, 56] derived the remarkable first order differential equations of motion in the Kerr space-time, which meant as for the analytical and also for numeric calculations of the test particle trajectories. These trajectories depend on the integrals of motion: \(\mu \)—the test particle mass, E—the test particle total energy, L—test particle azimuth angular momentum, and the very specific Carter constant Q, defining the non-equatorial motion of the test particle. The motion of test particles is bounded to an equatorial plane of the metric if \(Q = 0\).

$$\begin{aligned} \Sigma \frac{dr}{d\tau }= & {} \pm \sqrt{R(r)}, \end{aligned}$$
(13)
$$\begin{aligned} \Sigma \frac{d\theta }{d\tau }= & {} \pm \sqrt{\Theta (\theta )}, \end{aligned}$$
(14)
$$\begin{aligned} \Sigma \frac{d\phi }{d\tau }= & {} L\sin ^{-2}\theta +a(\Delta ^{-1}P-E), \end{aligned}$$
(15)
$$\begin{aligned} \Sigma \frac{dt}{d\tau }= & {} a(L-aE\sin ^{2}\theta )+(r^2+a^2)\Delta ^{-1}P, \end{aligned}$$
(16)

where \(\tau \) is a proper time of the massive (\(\mu \ne 0\)) test particles or a corresponding affine parametrization for the massless (\(\mu =0\)) test particles. The radial potential R(r) in these equations, which governs the radial motion of test particles, is

$$\begin{aligned} R(r) = P^2-\Delta [\mu ^2r^2+(L-aE)^2+Q], \end{aligned}$$
(17)

where

$$\begin{aligned} P=E(r^2+a^2)-a L. \end{aligned}$$
(18)

Respectively, the polar potential \(\Theta (\theta )\) is

$$\begin{aligned} \Theta (\theta ) = Q-\cos ^2\theta [a^2(\mu ^2-E^2)+L^2\sin ^{-2}\theta ]. \end{aligned}$$
(19)

Note that zeros of these potentials define the radial and polar turning points \(dR/d\tau =0\) and \(d\Theta /d\tau =0\), correspondingly.

It is useful to define the orbital parameters for the massive test particles, \(\gamma =E/\mu \), \(\lambda =L/E\) and \(q^2=Q/E^2\). Notice that there are also possible particle trajectories with \(Q<0\), which do not reach the space infinity and, consequently, a distant observer (formally at \(r=\infty \)). We will not consider such trajectories in this article.

1.3 A.3 Integral equations for test particle motion

In our numerical calculations, we also use the integral equations for test particle motion (13)–(16):

$$\begin{aligned}&\fint \frac{dr}{\sqrt{R(r)}} =\fint \frac{d\theta }{\sqrt{\Theta (\theta )}}, \end{aligned}$$
(20)
$$\begin{aligned}&\tau =\fint \frac{r^2}{\sqrt{R(r)}}\,dr +\fint \frac{a^2\cos ^2\theta }{\sqrt{\Theta (\theta )}}\,d\theta , \end{aligned}$$
(21)
$$\begin{aligned}&\phi =\fint \frac{aP}{\Delta \sqrt{R(r)}}\,dr +\fint \frac{L-aE\sin ^2\theta }{\sin ^2\theta \sqrt{\Theta (\theta )}}\,d\theta , \end{aligned}$$
(22)
$$\begin{aligned}&t=\fint \frac{(r^2+a^2)P}{\Delta \sqrt{R(r)}}\,dr +\fint \frac{(L-aE\sin ^2\theta )a}{\sqrt{\Theta (\theta )}}\,d\theta . \end{aligned}$$
(23)

The integrals in (20)–(23) are the line (or curve) integrals monotonically growing along the test particle trajectories. For example, the line integrals in (20) add up to the ordinary ones in the absence of both the radial and polar turning points on the particle test particle trajectory:

$$\begin{aligned} \int ^{r_s}_{r_0}\frac{dr}{\sqrt{R(r)}}= \int _{\theta _0}^{\theta _s}\frac{d\theta }{\sqrt{\Theta (\theta )}}. \end{aligned}$$
(24)

Here \(r_s\) and \(\theta _s\) are the initial test particle (e. g., photon) radial and polar coordinates, while \(r_0\gg r_\mathrm{h}\) and \(\theta _0\) is the corresponding final (finishing) points on the trajectory (e. g., the photon detection point by a distant telescope). The second example is a case when there is only one turning point in the polar direction, \(\theta _\mathrm{min}(\lambda ,q)\) (derived from the equation \(\Theta (\theta )=0\)). The corresponding line integrals in (20) add up now to the ordinary ones:

$$\begin{aligned} \int _{r_s}^{r_0}\frac{dr}{\sqrt{R(r)}} =\int _{\theta _\mathrm{min}}^{\theta _s}\frac{d\theta }{\sqrt{\Theta (\theta )}} +\int _{\theta _\mathrm{min}}^{\theta _0}\frac{d\theta }{\sqrt{\Theta (\theta )}}. \end{aligned}$$
(25)

The most complicated case, which we consider in this paper, corresponds to the test particle trajectory with the one turning point in the polar direction, \(\theta _\mathrm{min}(\lambda ,q)\) (derived from the equation \(\Theta (\theta )=0\)), and the one turning point in the radial direction, \(r_\mathrm{min}(\lambda ,q)\) (derived from the equation \(R(r)=0\)). The corresponding line integrals in (20) in the our most complicated case add up to the following ordinary ones:

$$\begin{aligned} \int _{r_\mathrm{min}}^{r_s}\!\!\frac{dr}{\sqrt{R(r)}} +\int _{r_\mathrm{min}}^{r_0}\!\!\frac{dr}{\sqrt{R(r)}} =\!\!\int _{\theta _\mathrm{min}}^{\theta _s}\!\!\frac{d\theta }{\sqrt{\Theta (\theta )}} +\!\!\int _{\theta _\mathrm{min}}^{\theta _0}\!\!\frac{d\theta }{\sqrt{\Theta (\theta )}}. \end{aligned}$$
(26)

It is clear that integral equations (20)–(23) for test particle trajectories with more numbers of turning points add up to the ordinary integrals in similar ways.

1.4 A.4 Energy shift of photons emitted by the moving bright spot

We suppose that a bright spherical massive blob of hot plasma with a mass \(\mu \) and total energy \(E=\mu \) (parabolic motion) is moving away from the extreme Kerr black hole (\(a=1\)) with ballistic velocity along the black hole rotation axis, starting very close to the event horizon radius, \(r_\mathrm{h}=1\). To disregard the tidal effects, we additionally suppose that the radius of bright massive blob, \(r_\mathrm{b}\), is negligible in comparison with the event horizon radius \(r_\mathrm{b}\ll r_\mathrm{h}\). It is also supposed that the radius of the blob remains constant during the motion.

From equation (19) for the polar potential \(\Theta (\theta )\) it follows that all photons reaching a distant observer and starting from the black hole rotation axis (at \(\theta _s=0\) and \(r\ge r_\mathrm{h}\)) must have orbital parameter \(\lambda =L/E=0\). So, our task is reduced to finding only one orbital parameter, q(r) for these photons.

Orbital parameters \(\lambda =L/E\) and \(q=\sqrt{Q}/E\) of the photon trajectory, reaching a distant telescope (placed at the radius \(r_0>>r_\mathrm{h}\), at the polar angle \(\theta _0\) and at the azimuth angle \(\varphi _0\)), are directly related with the corresponding impact parameters, viewed at the celestial sphere [43, 44, 70]:

$$\begin{aligned} \alpha =-\frac{\lambda }{\sin \theta _0}, \quad \beta = \pm \sqrt{\Theta (\theta _0)}, \end{aligned}$$
(27)

where \(\Theta (\theta )\) defined in equation (19). The impact parameters \(\alpha \) and \(\beta \) are called, respectively, the horizontal and vertical impact parameters.

We also take into account the gravitational red-shift and Doppler effect of photons emitted by the luminous blob of plasma moving along the jet and detected by a distant observer. The orthonormal Locally Non-Rotating Frames (LNRF) from equations (7)–(12) is suitable for calculations of the corresponding energy shift of these photons and energy flux from the bright blob detected by a distant observer.

A radial velocity component of the luminous blob with a mass \(\mu \), moving along the jet with the azimuth angular momentum \(L=0\) in the LNRF is

$$\begin{aligned} V\equiv V^{(r)}=\frac{u^\mu e^{(r)}_\mu }{u^\nu e^{(t)}_\nu } =\frac{\sqrt{R(r)}}{(r^2+a^2)\gamma }. \end{aligned}$$
(28)

Here, \(\gamma =E/\mu \) is the Lorentz gamma-factor, \(u^\mu =dx^\mu /ds\) is the 4-velocity of the blob, defined by differential equations (13)–(16), and R(r) is the radial potential from equation (17) with the parameter \(L=0\).

All photons, reaching a distant observer, start from the moving blob with the orbital parameter \(\lambda =0\). In this case, the corresponding components of the photon 4-momentum \(p^{(\mu )}\) in the LNRF are

$$\begin{aligned} p^{(\varphi )}= & {} g^{\mu \nu }p_\nu e_\mu ^{(\varphi )} =0, \end{aligned}$$
(29)
$$\begin{aligned} p^{(t)}= & {} g^{\mu \nu }p_\nu e_\mu ^{(t)} =\sqrt{\frac{r^2+a^2}{\Delta }}, \end{aligned}$$
(30)
$$\begin{aligned} p^{(r)}= & {} g^{\mu \nu }p_\nu e_\mu ^{(r)} =\sqrt{\frac{r^2+a^2}{\Delta }-\frac{r^2+q^2}{r^2+a^2}}, \end{aligned}$$
(31)

where \(\Delta \) defined in equation (5). The condition \(p^{(i)}p_{(i)}=0\) determines the fourth component of the photon 4-momentum. The photon energy in the LNRF is \(E_\mathrm{LNRF}=p^{(t)}\). Meantime, the corresponding photon energy in the comoving frame of the massive blob moving with a radial velocity V relative to the LNRF is

$$\begin{aligned} {\mathcal {E}}(r,q)=\frac{p^{(t)}-Vp^{(r)}}{\sqrt{1-V^2}}. \end{aligned}$$
(32)

As a result, the photon energy shift (ratio of the photon frequency detected by a distant observer to the frequency of the same photon in the comoving frame of the blob) is \(g(r,q)=1/\mathcal{{E}}(r,q)\). This energy takes into account gravitational red-shift and the Doppler effect.

1.5 A.5 Energy flux from the moving bright spot

We incorporate the photon energy shift g(rq) from equation (32) into the very useful Cunningham–Bardeen formalism [43, 44] for numerical calculation of the energy flux detected by a distant observer from the moving blob of finite size. We also numerically calculate the elliptic deformation of the lensed prime image of the small spherical blob in the strong gravitational field of extreme Kerr black hole (see more details of these calculations in [57,58,59,60, 71,72,73])

The corresponding flux of energy detected by a distant observer from the bright spot in the jet is the double integral of the surface brightness over the angular spread of the bright spot image [44]:

$$\begin{aligned} F_0=\iint \frac{d\alpha d\beta }{r_0^2} \frac{L}{4\pi ^2b^2}g(r,q)^2. \end{aligned}$$
(33)

In this equation \(\alpha \) and \(\beta \) are respectively the horizontal and vertical impact parameters from (27), \(r_0\) is a distance to the bright spot, b is a radius of the bright spot (bright spherical massive blob of hot plasma) and g(rq) is the detected photon energy shift from equation (32). The double integral (33) in the case of a distant observer at \(r_0\gg r_\mathrm{h}\) is well approximated in the deviation of the photon trajectory from the central one in the gravitational field of the black hole:

$$\begin{aligned} F_0=\frac{L}{4\pi ^2b^2r_0^2}g(r,q)^2\iint d\alpha d\beta . \end{aligned}$$
(34)

In the used Cunningham–Bardeen formalism it is developed the effective perturbation method for numerical calculation of the double integral in this equation by taking into account the intersection of photon trajectory with the plane of the bright spot disk perpendicular to the radial direction in the local rest frame the bright spot (see details of this effective perturbation method in [44]).

Results of all our numerical calculations are illustrated in Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9 and in numerical animation [69].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dokuchaev, V.I., Nazarova, N.O. Modeling the motion of a bright spot in jets from black holes M87* and SgrA*. Gen Relativ Gravit 53, 83 (2021). https://doi.org/10.1007/s10714-021-02854-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02854-8

Keywords

Navigation