Skip to main content
Log in

Real-time life and degradation prediction of ceramic filter tube based on state-space model

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Bayesian estimation theory was used in this study to establish a state-space model of the ceramic filter tube degradation process. The model continuously integrates the latest residual pressure drop to update its own parameters, then the change rate of the degradation state, remaining life, and failure probability density distribution of the tube in real time. The residual pressure drop of the Shell Coal Gas Process was analyzed to find that the model results converge to real values as the residual pressure drop increases. The change rate of the ceramic filter tube degradation state calculated by the model gradually decreases over time, which is consistent with the initial rapid increase in residual pressure drop followed by a slower increase in later stages of operation. The amount of particle deposition in the ceramic filter tube wall under different operating times was measured and predicted; the predictions are consistent with the state-space model results. The state-space model also reflects variations in filter tube performance degradation caused by emergent conditions such as leakage or fractures, as it does not make stationarity assumptions for the degradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Choi, J. U. Kim, H. S. Kim, S. H. Kim and M. H. Lee, Ceram. Int., 41, 10030 (2015).

    Article  CAS  Google Scholar 

  2. S. Heidenreich, Fuel, 104, 83 (2013).

    Article  CAS  Google Scholar 

  3. B. L. Dou, C. Wang, H. S. Chen, Y. C. Song, B. Z. Xie, Y. J. Xu and C. Q. Tan, Chem. Eng. Res. Des., 90, 1901 (2012).

    Article  CAS  Google Scholar 

  4. B. A. Fariñas, M. Lupion, M. R. Galan and J. M. Fernandez, Fuel, 114, 120 (2013).

    Article  Google Scholar 

  5. H. Kamiya, Y. Sekiya and M. Horio, Powder Technol., 115, 139 (2001).

    Article  CAS  Google Scholar 

  6. G. Ahmadi and D. H. Smith, Aerosol. Scl. Tech., 36, 665 (2002).

    Article  CAS  Google Scholar 

  7. D. H. Smith, V. Powell, G. Ahmadi and E. Ibrahim, Powder Technol., 94, 15 (1997).

    Article  CAS  Google Scholar 

  8. N. L. D. Freitas, J. A. S. Goncalves, M. D. M. Innocentini and J. R. Coury, J. Hazard. Mater., 136, 747 (2006).

    Article  Google Scholar 

  9. I. Schildermans, J. Baeyens and K. Smolders, Filter. Sep., 41, 26 (2004).

    Article  CAS  Google Scholar 

  10. J. D. Chung, T. W Hwang and S. J. Park, Korean J. Chem. Eng., 20, 1118 (2003).

    Article  CAS  Google Scholar 

  11. M. A. Alvin, Fuel Process. Technol., 56, 143 (1998).

    Article  CAS  Google Scholar 

  12. H. C. Chi, Z. L. Ji, D. M. Sun and L. S. Cui, Chin. J. Chem. Eng., 17, 219 (2009).

    Article  CAS  Google Scholar 

  13. M. Durst, A. Reinhardt and H. Vollmer, Proceedings of the 1st European Symposium on Separation of Particles from Gases (1989).

  14. J. N. Phillips and H. W. A. Dries, Gas cleaning at high temperatures, Springer, Berlin, Germany (1993).

    Google Scholar 

  15. E. Schmidt, Filter. Sep., 34, 365 (1997).

    Article  Google Scholar 

  16. A. C. B. Neiva and L. J. Goldstein, Chem. Eng. Process, 42, 495 (2003).

    Article  CAS  Google Scholar 

  17. J. H. Choi, S. J. Ha and H. J. Jang, Powder Technol., 140, 106 (2004).

    Article  CAS  Google Scholar 

  18. W. Höflinger, C. Stöcklmyer and A. Hackl, Filter. Sep., 31, 806 (1994).

    Google Scholar 

  19. W. Tanthapanichakoon, T. Charinpanitkul, W. Jintaworn, J. Laksameearunotai, M. Amornkitbamrung, T. Fukui and M. Naito, Powder Technol., 180, 245 (2007).

    Article  Google Scholar 

  20. B. Scheibner and C. Wolters, Proceedings of the 5th International Symposiumon Gas Cleaning at High Temperature (2002).

  21. L. Thomas, J. Royal Statistical Soc., 168, 459 (2005).

    Article  Google Scholar 

  22. Y. W. Wang, Y. Q. Ni and X. Wang, Mech. Syst. Signal. Pr., 139, 51 (2020).

    Google Scholar 

  23. H. T. Lu, W. J. Kolarik and S. S. Lu, IEEE. T. Reliab., 50, 353 (2001).

    Article  Google Scholar 

  24. H. Boudali and J. B. Dugan, Eng. Syst. Saf., 87, 337 (2004).

    Article  Google Scholar 

  25. G. Petris, J. Stat. Softw., 36, 57 (2010).

    Article  Google Scholar 

  26. T. R. Core, Computing, 17, 12 (2015).

    Google Scholar 

  27. D. Spehner, R. Drillien, F. Proamer, D. Hanau and L. Edelmann, J. Microsc-Oxford, 207, 1 (2010).

    Article  Google Scholar 

  28. M. Lupion, B. Navarrete, B. A. Fariñas and M. R. Galan, Fuel, 108, 24 (2013).

    Article  CAS  Google Scholar 

  29. J. H. Choi, Y. G. Seo and J. W. Chung, Powder Technol., 114, 129 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longfei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L. Real-time life and degradation prediction of ceramic filter tube based on state-space model. Korean J. Chem. Eng. 38, 2122–2128 (2021). https://doi.org/10.1007/s11814-021-0854-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0854-9

Keywords

Navigation