Skip to main content
Log in

Characteristics of Sr0.92Y0.08Ti1−xNixO3−δ anode for direct internal steam methane reforming in solid oxide fuel cells

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Sr0.92Y0.08Ti1−xNixO3−δ (SYTN) having a perovskite structure was investigated as a direct internal steam methane reforming catalyst for use in solid oxide fuel cells. To analyze the effect of Ni-ion doping, 0, 3, and 5 mol% of Ni is doped at the B-site of Sr0.92Y0.08TiO3−δ (SYT). On doping, each Ni2+ cation substitutes a Ti4+ cation in SYT to form an oxygen vacancy with two electron holes, thus acting as an oxygen-ion conductor. The number of oxygen vacancies increases with increase in Ni-ion doping. In particular, Sr0.92Y0.08Ti0.95Ni0.05O3−δ (SYTN5) shows excellent catalytic activity for steam methane reforming, yielding CH4 conversions of 0.80, 0.96, and 0.99 at 700, 800, and 900 °C, respectively, and H2-to-CO ratios of 3.38, 3.32 and 3.24 at 700, 800, and 900 °C, respectively, which are very close to the theoretical values for the steam methane reforming and water gas shift reactions. The excellent electrochemical property and high oxygen-ion conductivity of the SYTN5 anode result in good cell performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Lyu, W. Shi and M. Han, Appl. Energy, 228, 556 (2018).

    Article  CAS  Google Scholar 

  2. Fuel Cell Handbook 7th Edition, U.S. Department of Energy, EG&G Technical Services Inc., West Virginia (2004).

  3. J. M. Klein, M. Hénault, C. Roux, Y. Bultel and S. Georges, J. Power Sources, 193, 331 (2009).

    Article  CAS  Google Scholar 

  4. L. Barelli, G. Bidini, A. Di Michele, L. Gammaitoni, M. Mattarelli, F. Mondi and E. Sisani, Int. J. Hydrogen Energy, 44, 16582 (2019).

    Article  CAS  Google Scholar 

  5. H. Su and Y. H. Hu, Chem. Eng. J., 402, 126235 (2020).

    Article  CAS  Google Scholar 

  6. A. D. Giuliano and K. Gallucci, Chem. Eng. Process, 130, 240 (2018).

    Article  Google Scholar 

  7. L. Fan, L. Van Biert, A. T. Thattai, A. H. M. Verkooijen and P. V. Aravind, Int. J. Hydrogen Energy, 40, 5150 (2015).

    Article  CAS  Google Scholar 

  8. Y. Matsuzaki and I. Yasuda, J. Electrochem. Soc., 147, 1630 (2000).

    Article  CAS  Google Scholar 

  9. Q. Zhao, Y. Wang, Y. Wang, L. Li, W. Zeng, G. Li and C. Hu, Int. J. Hydrogen Energy, 45, 14281 (2020).

    Article  CAS  Google Scholar 

  10. A. J. Jacobson, Chem. Mater., 22, 660 (2010).

    Article  CAS  Google Scholar 

  11. J. W Fergus, R. Hui, X. Li, D. P. Wilkinson and J. Zhang, Solid oxide fuel cells: Materials properties and performance, CRC press, Boca Raton (2019).

    Google Scholar 

  12. A. Atkinson, S. Barentt, R. J. Gorte, J. T. S. Irvine, A. J. Mcevoy, M. Mogensen, S. C. Singhal and J. Vohs, Nat. Mater., 3, 17 (2004).

    Article  CAS  Google Scholar 

  13. J. Hanna, W. Y. Lee, Y. Shi and A. F. Ghoniem, Prog. Energ. Combust., 40, 74 (2014).

    Article  Google Scholar 

  14. S. I. Lee, J. M. Vohs and R. J. Gorte, J. Electrochem. Soc., 151, A1319 (2004).

    Article  CAS  Google Scholar 

  15. H. Kim, C. Lu, W. L. Worrell, J. M. Vohs and R. J. Gorte, J. Electrochem. Soc., 149, A247 (2002).

    Article  CAS  Google Scholar 

  16. M. Suzuki, H. Sasaki, S. Otoshi, A. Kajimura and M. Ippommatsu, Solid State Ionics, 62, 125 (1993).

    Article  CAS  Google Scholar 

  17. N. Mahato, A. Banerjee, A. Gupta, S. Omar and K. Balani, Prog. Mater. Sci., 72, 141 (2015).

    Article  CAS  Google Scholar 

  18. R. J. Gorte, S. Park, J. M. Vohs and C. Wang, Adv. Mater., 12, 1465 (2000).

    Article  CAS  Google Scholar 

  19. H. Ding, D. Zhou, S. Liu, W. Wu, Y. Yang, Y. Yang and Z. Tao, Appl. Energy, 233–234, 37 (2019).

    Article  Google Scholar 

  20. Z. Bian, Z. Wang, B. Jiang, P. Hongmanorom, W. Zhong and S. Kawi, Renew. Sustain. Energy Rev., 134, 110291 (2020).

    Article  CAS  Google Scholar 

  21. K. Kim, C. Lim and J. W. Han, Korean J. Chem. Eng., 37, 1295 (2020).

    Article  CAS  Google Scholar 

  22. H. Jeong, D. Kim, B. Sharma, J. H. Noh, K. T. Lee and J. H. Myung, Korean J. Chem. Eng., 37, 1440 (2020).

    Article  CAS  Google Scholar 

  23. J. B. Goodenough and Y. H. Huang, J. Power Sources, 173, 1 (2007).

    Article  CAS  Google Scholar 

  24. L. Shu, J. Sunarso, S. S. Hashim, J. Mao, W. Zhou and F. Liang, Int. J. Hydrogen Energy, 44, 31275 (2019).

    Article  CAS  Google Scholar 

  25. J. Cao, C. Su, Y. Ji, G. Yang and Z. Shao, J. Energy Chem., 57, 406 (2021).

    Article  Google Scholar 

  26. M. A. Gwan and J. W. Yun, J. Electroceram., 40, 171 (2018).

    Article  CAS  Google Scholar 

  27. J. H. Kim and J. W Yun, J. Electrochem. Sci. Te., 10, 335 (2019).

    CAS  Google Scholar 

  28. J. M. Lee and J. W. Yun, Ceram. Int., 42, 8698 (2016).

    Article  CAS  Google Scholar 

  29. J. H. Kim and J. W. Yun, J. Electrochem. Sci. Te., 9, 133 (2018).

    Article  CAS  Google Scholar 

  30. E. K. Park, S. Lee and J. W. Yun, Appl. Surf. Sci., 429, 171 (2018).

    Article  CAS  Google Scholar 

  31. H. S. Kim, Y. Jeon, J. H. Kim, G. Y. Jang, S. P. Yoon and J. W Yun, Appl. Surf. Sci., 510, 145450 (2020).

    Article  CAS  Google Scholar 

  32. D. Papargyriou and J. T. S. Irvine, Solid State Ionics, 288, 120 (2016).

    Article  CAS  Google Scholar 

  33. Y. Gao, D. Chen, M. Saccoccio, Z. Lu and F. Ciucci, Nano Energy, 27, 499 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation Lab support program for material, parts, equipment (20012555, Commercialization of nanocarbon composites materials in electric and electronic display and energy industries) funded by the Ministry of Trade, industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Woo Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Mo, S.I., Park, G.S. et al. Characteristics of Sr0.92Y0.08Ti1−xNixO3−δ anode for direct internal steam methane reforming in solid oxide fuel cells. Korean J. Chem. Eng. 38, 1834–1842 (2021). https://doi.org/10.1007/s11814-021-0871-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0871-8

Keywords

Navigation