Skip to main content
Log in

Galvanomagnetic Properties of Bismuth–Antimony Films under Conditions of Plane Tensile Strain

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of studying the resistivity, magnetoresistance, and Hall coefficient of thin films of bismuth and the bismuth–antimony system on a borosilicate-glass substrate under plane tensile strain are presented. Deformation is created by a specially developed method that allows a change in its magnitude directly during measurement of the film properties. The films are obtained by thermal evaporation in vacuum. Varying the technological modes made it possible to obtain films of various structures: from small blocks to single crystal. Based on the experimental results, within the framework of the two-band approximation, the concentrations of charge carriers and the positions of the energy extrema of the valence and conduction bands relative to the chemical potential level are calculated. It is shown that the two-band approximation is insufficient for describing the properties of films of the studied compositions under plane tensile strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. A. Bukharaev, A. K. Zvezdin, A. P. Pyatakov, and Yu. K. Fetisov, Phys.—Usp., 61, 1175 (2018). https://doi.org/10.3367/UFNe.2018.01.038279

    Article  CAS  Google Scholar 

  2. R. V. Gorev and O. G. Udalov, Phys. Solid State 61, 1563 (2019). https://doi.org/10.1134/S1063783419090087

    Article  CAS  Google Scholar 

  3. O. L. Ermolaeva, N. S. Gusev, E. V. Skorokhodov, V. V. Rogov, and O. G. Udalov, Phys. Solid State 61, 1572 (2019). https://doi.org/10.1134/S1063783419090051

    Article  CAS  Google Scholar 

  4. F. Jin, M. Gu, C. Ma, E.-J. Guo, J. Zhu, L. Qu, Z. Zhang, K. Zhang, L. Xu, B. Chen, F. Chen, G.-Y. Gao, J. M. Rondinelli, and W. Wu, Nano Lett. 20, 1131 (2020). https://doi.org/10.1021/acs.nanolett.9b04506

    Article  CAS  Google Scholar 

  5. E. Akturk, O. U. Akturk, and S. Ciraci, Phys. Rev. B 94, 014115 (2016). https://doi.org/10.1103/PhysRevB.94.014115

    Article  CAS  Google Scholar 

  6. X. Xi, C. Ma, Z. Liu, Z. Chen, W. Ku, H. Berger, C. Martin, D. B. Tanner, and G. L. Carr, Phys. Rev. Lett. 111, 155701 (2013). https://doi.org/10.1103/PhysRevLett.111.155701

    Article  CAS  Google Scholar 

  7. S. S. Won, H. Seo, M. Kawahara, S. Glinsek, J. Lee, Y. Kim, C. K. Jeong, A. I. Kingon, and S. H. Kim, Nano Energy 55, 182 (2019). https://doi.org/10.1016/j.nanoen.2018.10.068

    Article  CAS  Google Scholar 

  8. H. Wang, F. Khatkhatay, J. Jian, J. Huang, M. Fan, and H. Wang, Mater. Res. Bull. 110, 120 (2019). https://doi.org/10.1016/j.materresbull.2018.10.016

    Article  CAS  Google Scholar 

  9. A. V. Suslov, M. V. Grabov, V. A. Komarov, E. V. Demidov, S. V. Senkevich, and M. V. Suslov, J. Phys.: Conf. Ser. 857, 012006 (2019). https://doi.org/10.1088/1742-6596/1281/1/012084

    Article  CAS  Google Scholar 

  10. V. M. Grabov, E. V. Demidov, V. A. Komarov, M. M. Klimantov, D. Yu. Matveev, S. V. Slepnev, E. V. Usynin, E. E. Khristich, and E. V. Konstantinov, Izv. Ross. Gos. Pedagog. Univ. im. A.I. Gertsena, No. 122, 105 (2010).

    Google Scholar 

  11. V. M. Grabov, V. A. Gerega, E. V. Demidov, V. A. Komarov, M. V. Staritsyn, A. V. Suslov, and M. V. Suslov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 14, 913 (2020).

    Article  CAS  Google Scholar 

  12. E. V. Demidov, V. A. Komarov, A. N. Krushelnitckii, and A. V. Suslov, Semiconductors 51, 840 (2017). https://doi.org/10.1134/S1063782617070065

    Article  CAS  Google Scholar 

  13. A. V. Suslov, V. M. Grabov, V. A. Komarov, E. V. Demidov, S. V. Senkevich, and M. V. Suslov, Semiconductors 53, 727 (2019). https://doi.org/10.1134/S1063782619060046

    Article  Google Scholar 

  14. V. M. Grabov, V. A. Komarov, E. V. Demidov, S. V. Senkevich, A. V. Suslov, and M. V. Suslov, Univ. Nauchn. Zh., No. 35, 48 (2017).

  15. T. Hirahara, N. Fukui, T. Shirasawa, M. Yamada, M. Aitani, H. Miyazaki, M. Matsunami, S. Kimura, T. Takahashi, S. Hasegawa, and K. Kobayashi, Phys. Rev. Lett. 109, 227401 (2012). https://doi.org/10.1103/PhysRevLett.109.227401

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the framework of a state assignment with financial support from the Ministry of Education of Russia (project FSZN-2020-0026) and the Russian Foundation for Basic Research (grant no. 18-32-00430).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Suslov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabov, V.M., Demidov, E.V., Komarov, V.A. et al. Galvanomagnetic Properties of Bismuth–Antimony Films under Conditions of Plane Tensile Strain. J. Surf. Investig. 15, 777–780 (2021). https://doi.org/10.1134/S1027451021040066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021040066

Keywords:

Navigation