Skip to main content
Log in

Abstract

The feasibility of using layers of metallic chromium as a switching material for a medium-temperature thermoelectric CrSi2 is investigated. The CrSi2/Cr samples are synthesized by the hot pressing of a fine electrolytic chromium powder with single-crystal and polycrystalline chromium disilicide, followed by high-temperature annealing. X-ray phase analysis, scanning electron microscopy, energy X-ray dispersive spectroscopy and electron backscatter diffraction showed that no secondary phases are formed both in the bulk of the thermoelectric material and at the CrSi2–Cr interface. Therefore, Cr can be recommended as a switching material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. I. Fedorov and V. K. Zaitsev, in Handbook of Thermoelectric, Ed. by D. M. Rowe (CRC, New York, 2006), p. 31.

    Google Scholar 

  2. F. Yu. Solomkin, E. I. Suvorova, V. K. Zaitsev, S. V. Novikov, A. T. Burkov, A. Yu. Samunin, and G. N. Isachenko, Tech. Phys. 56, 305 (2011).

    Article  CAS  Google Scholar 

  3. F. Yu. Solomkin, V. K. Zaitsev, S. V. Novikov, Yu. A. Samunin, and G. N. Isachenko, Tech. Phys. 58, 289 (2013).

    Article  CAS  Google Scholar 

  4. P. V. Gel’d and F. A. Sidorenko, in Silicides of Transition Metals of the Fourth Period (Metallurgiya, Moscow, 1971), p. 90

    Google Scholar 

  5. A. B. Gokhale and G. J. Abbaschian, J. Phase Equilib. 8, 474 (1987). https://doi.org/10.1007/BF02893156

    Article  CAS  Google Scholar 

  6. H. Okamoto, J. Phase Equilib. 22, 593 (2001).

    Article  CAS  Google Scholar 

  7. B. Borén, Arch. Chem., Mineral. Geol., No. 11, 1 (1933).

  8. C. H. Dauben, D. H. Templeton, and C. E. Myers, J. Phys. Chem. 60, 443 (1956). https://doi.org/10.1021/j150538a015

    Article  CAS  Google Scholar 

  9. K. Tanaka, K. Nawata, M. Koiwa, M. Yamaguchi, and H. Inui, Mater. Res. Soc. Symp. Proc. 646, 4.3.1 (2001).

  10. F. Yu. Solomkin, V. K. Zaitsev, N. F. Kartenko, A. S. Kolosova, A. S. Orekhov, A. Yu. Samunin, and G. N. Isachenko, Tech. Phys. 55, 151 (2010).

    Article  CAS  Google Scholar 

  11. F. Yu. Solomkin, V. K. Zaitsev, N. F. Kartenko, A. S. Kolosova, A. T. Burkov, O. N. Uryupin, and A. A. Shabaldin, Tech. Phys. 55, 750 (2010).

    Article  CAS  Google Scholar 

  12. R. Hielscher and C. Schaeben, J. Appl. Crystallogr. 41, 1024 (2008). https://doi.org/10.1107/S0021889808030112

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of a state assignment using equipment from the Center for Collective Use of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences (project RFMEFI62119X0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Klechkovskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solomkin, F.Y., Samunin, A.Y., Zaitseva, N.V. et al. Feasibility of Using Chromium as a Switching Material for CrSi2. J. Surf. Investig. 15, 678–682 (2021). https://doi.org/10.1134/S1027451021040182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021040182

Keywords:

Navigation