Skip to main content
Log in

Effect of Lithium on the Structural-Phase State of Rapidly Solidified Al–Mg–Li Alloy During Heat Treatment

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The effect of lithium on the structural-phase state of aerospace aluminum alloy 1421 of the Al–Mg–Li system prepared by rapid solidification is studied. Analysis of the composition of the surface layers of alloy samples carried out by means of nuclear reaction analysis establishes that lithium diffuses to the surface at elevated treatment temperatures and its concentration in a thin surface layer (0.1 μm) reaches 38 at %, which is 4.8 times higher than the calculated Li content in the alloy. By measuring the microhardness, strengthening of the samples is determined upon isothermal annealing at a temperature of 400°C, which is caused by the precipitation of metastable lithium-containing phases. The results of X-ray diffraction analysis indicate an increase in the fraction of Li2O2 peroxide on the foil surface upon annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. N. Antipova, A. A. Labutin, and A. Yu. Oleshko, Quality Management of Technological Processes (Nauchnyi Konsul’tant, Korolev, 2015), p. 165.

  2. T. Dorin, A. Vahid, and J. Lamb, Fundamentals of Aluminum Metallurgy, Ed. by R. N. Lumley (Woodhead, Cambridge, 2018).

    Google Scholar 

  3. A. M. Kuzei, Structural Phase Transformations in Rapidly Quenched Aluminum Alloys (Belaruskaya Navuka, Minsk, 2011) [in Russian].

    Google Scholar 

  4. V. G. Shepelevich, I. A. Bushkevich, E. Wendler, and I. I. Tashlykova-Bushkevich, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 13, 555 (2019). https://doi.org/10.1134/S1027451019030327

    Article  CAS  Google Scholar 

  5. L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis (Elsevier, New York, 1986; Mir, Moscow, 1989).

  6. C. Jeynes and J. L. Colaux, Analyst 141, 5944 (2016). https://doi.org/10.1039/c6an01167e

    Article  CAS  Google Scholar 

  7. I. S. Miroshnichenko, Quenching from a Liquid State (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  8. M. Mayer, SIMNRA, a Simulation Program for the Analysis of NRA, RBS and ERDA (Am. Inst. Phys., New York, 1999).

    Book  Google Scholar 

  9. IBANDL. https://www-nds.iaea.org/exfor/ibandl.htm.

  10. S. Bashkin, Phys. Rev. 84, 1124 (1951). https://Doi.org/10.1103/PhysRev.84.1124

    Article  CAS  Google Scholar 

  11. D. Abriola, A. F. Gurbich, M. Kokkoris, A. Lagoyannis, and V. Panneta, Nucl. Instrum. Methods Phys. Res., Sect. B 269, 2011 (2011). https://doi.org/10.1016/j.nimb.2011.06.002

    Article  CAS  Google Scholar 

  12. A. F. Gurbich, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1703 (2010). https://doi.org/10.1016/j.nimb.2010.02.011

    Article  CAS  Google Scholar 

  13. W. Wesch, J. Rensberg, M. Schmidt, and E. Wendler, J. Appl. Phys. 126, 125105 (2019). https://doi.org/10.1063/1.5116667

    Article  CAS  Google Scholar 

  14. M. A. Abuzeid, F. M. Aly, Y. P. Antoufiev, A. T. Baranik, T. M. Nower, and P. V. Sorokin, Nucl. Phys. 45, 123 (1963). https://doi.org/10.1016/0029-5582(63)90788-0

    Article  CAS  Google Scholar 

  15. E. Schmidt, K. Ritter, K. Gartner, and E. Wendler, Nucl. Instrum. Methods Phys. Res., Sect. B 409, 126 (2017). https://doi.org/10.1016/j.nimb.2017.03.111

    Article  CAS  Google Scholar 

  16. Materials Project. https://materialsproject.org.

  17. I. A. Bushkevich, V. G. Shepelevich, E. Wendler, I. I. Tashlykova-Bushkevich, N. V. Adintsov, and M. V. Kocherga, in Proceedings of 13th International Conference on Interaction of Radiation with a Solid (Minsk, 2019), p. 505.

  18. V. G. Davydov, L. B. Ber, V. I. Elagin, M. V. Samarina, N. I. Kolobnev, and L. B. Khokhlatova, Tekhnol. Legk. Splavov, No. 1, 9 (1996).

    Google Scholar 

  19. L. A. Davis, S. K. Das, J. C. M. Li, and M. S. Zedalis, Int. J. Rapid Solid 8, 73 (1994).

    CAS  Google Scholar 

  20. I. I. Novikov, Theory of Heat Treatment of Metals (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  21. W. A. Lanford, M. Parenti, B. J. Nordell, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 371, 211 (2016). https://doi.org/10.1016/j.nimb.2015.10.052

    Article  CAS  Google Scholar 

  22. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Butterworth-Heinemann, Oxford, 1998).

    Google Scholar 

  23. I. A. Bushkevich and V. G. Shepelevich in Proceedings of 12th International Conference on Interaction of Radiation with a Solid (Minsk, 2017), p. 211.

  24. I. I. Tashlykova-Bushkevich, Vacuum 78, 529 (2005). https://doi.org/10.1016/J.VACUUM.2005.01.080

    Article  CAS  Google Scholar 

  25. I. I. Tashlykova-Bushkevich, J. Alloys Compd. 478, 229 (2009). https://doi.org/10.1016/j.jallcom.2008.12.006

    Article  CAS  Google Scholar 

  26. V. V. Likutin, A. V. Krainikov, and G. E. Thompson, Fiz. Met. Metalloved. 97, 58 (2004).

    CAS  Google Scholar 

  27. A. V. Krainikov, Poroshk. Metall., Nos. 7–8, 34 (2010).

    Google Scholar 

  28. P. Yu. Kikin, V. N. Perevezentsev, and E. E. Rusin, Phys. Met. Metallogr. 118, 180 (2015).

    Google Scholar 

  29. I. I. Tashlykova-Bushkevich, V. G. Shepelevich, M. Amati, L. Gregoratti, and M. Kiskinova, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 14, 66 (2020).

    Article  CAS  Google Scholar 

  30. I. N. Fridlyander, V. S. Sandler, and T. I. Nikol’skaya, Metalloved. Term. Obrab. Met., No. 2, 20 (1983).

  31. A. I. Vorob’ev, Sb. Ref. Nauchno-Issled. Opytno-Konstrukt. Rabot, Ser. 9:53. Metall. 3 (3), 43 (2007).

    Google Scholar 

  32. A. F. Dresvyannikov and M. E. Kolpakov, Vestn. Kazan. Tekhnol. Univ. 19 (9), 36 (2016).

    CAS  Google Scholar 

  33. P. Yu. Kikin, V. N. Perevezentsev, E. E. Rusin, and N. V. Zemlyakova, Metalloved. Term. Obrab. Met., No. 8, 43 (2012).

  34. P. Yu. Kikin, V. N. Perevezentsev, and E. E. Rusin, Phys. Met. Metallogr. 118, 180 (2015).

    Google Scholar 

  35. T. Schoeberl and S. Kumar, J. Alloys Compd. 255, 135 (1997). https://doi.org/10.1016/S0925-8388(96)02818-6

    Article  CAS  Google Scholar 

  36. Y. Minamino, T. Yamane, and H. Araki, Metall. Mater. Trans. A 18, 1536 (1987). https://doi.org/10.1007/BF02646667

    Article  Google Scholar 

  37. M. S. Udyavar and E. S. Dwarakadasa, J. Mater. Sci. Lett. 11, 490 (1992). https://doi.org/10.1007/BF00731114

    Article  CAS  Google Scholar 

  38. J. M. Papazian and R. L. Schulte, Metall. Mater. Trans. A 21, 39 (1990). https://doi.org/10.1007/BF02656422

    Article  Google Scholar 

  39. I. A. Bushkevich, A. V. Borodyn, Yu. E. Fishkina, and I. I. Tashlykova-Bushkevich in Proceedings of the VIII International Conference on Actual Problems of Solid State Physics (Minsk, 2018), Vol. 1, p. 134.

  40. Yu. Buranova, V. Kulitskkiy, M. Peterlechner, A. Mogucheva, R. Kaibyshev, S. V. Divinski, and G. Wilde, Acta Mater. 124, 210 (2017). https://doi.org/10.1016/j.actamat.2016.10.064

    Article  CAS  Google Scholar 

  41. R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi, Mater. Sci. Technol. 21, 408 (2005). https://doi.org/10.1179/174328405X36610

    Article  CAS  Google Scholar 

  42. R. K. Islamgaliev, N. F. Yunusova, R. Z. Valiev, N. K. Tsenev, V. N. Perevezentsev, and T. G. Langdon, Scr. Mater. 49, 467 (2003). https://doi.org/10.1016/S1359-6462(03)00291-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Stoliar or I. I. Tashlykova-Bushkevich.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoliar, I.A., Shepelevich, V.G., Wendler, E. et al. Effect of Lithium on the Structural-Phase State of Rapidly Solidified Al–Mg–Li Alloy During Heat Treatment. J. Surf. Investig. 15, 752–758 (2021). https://doi.org/10.1134/S1027451021040194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021040194

Keywords:

Navigation