Skip to main content
Log in

Correlation of Structural, Morphological and Electrochemical Impedance Study of Electrochemically Prepared p-Type Porous Silicon

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A simple and inexpensive metal-catalyzed technique has verified the efficiency of texturing p-type Si wafer at room temperature. This method facilitates the etching of p-type silicon in a solution of HF with the assistance of addition HNO3 as an oxidizing agent to the solution. Electroless deposition of Ag was accomplished on p-type Si (100) surface before immersion in the etchant solution. The physical properties of the porous silicon (P–Si) layer produced as a function of etching time were investigated through various instruments. The nanopores parameters, the average crystallite sizes besides the other micro-structural parameters were calculated for each etching time employing by X-ray diffraction (XRD) technique. The nanopores layer was formed on the surface of Si owing to Ag-enhanced chemical etching of P–Si in an aqueous 11 M HF/0.5 M HNO3 solution. Scanning electron microscopy (SEM), atomic force microscopy (AFM) studied the topographic and roughness of the surface of P–Si. Alternatively, the investigated spectra illustrate that the deposited silver diffuses into the pore while the porosity of P–Si was etching time-dependent in the range of (3.23, 6.01, and 16.12%) for 15, 30 and 60 min, respectively. The contact angles measurements show the hydrophilic nature of the prepared samples. Electrochemical impedance spectroscopy (EIS) shows the electrical equivalent circuit that fitted to the experimental impedance results of the metal-modified silicon surface in an aqueous solution of HF/oxidizing agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. L. Canham, Handbook of Porous Silicon (Springer, Basel, 2014).

    Book  Google Scholar 

  2. I. A. Levitsky, Sensors 15, 19968 (2015).

    Article  CAS  Google Scholar 

  3. K. Kang, H. S. Lee, D. W. Han, G. S. Kim, D. Lee, G. Lee, Y. M. Kang, and M. H. Jo, Appl. Phys. Lett. 96, 053110 (2010).

    Article  CAS  Google Scholar 

  4. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, Nano Lett. 8, 710 (2008).

    Article  CAS  Google Scholar 

  5. Y. Liu, W. Sun, and Y. Jian, Mater. Lett. 139, 437 (2015).

    Article  CAS  Google Scholar 

  6. N. Naderi and M. R. Hashim, J. Alloy. Compd. 552, (2013).

  7. O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep. 38, 1 (2000).

    Article  CAS  Google Scholar 

  8. W. T. Hsieh and Y. K. Fang, IEEE Trans. Electron Dev. 48, 801 (2001).

    Article  CAS  Google Scholar 

  9. M. Morel, M. Le Berre, V. Lysenko, G. Delhomme, A. Dittmar, and D. Barbier, Mater. Res. Soc. Symp. Proc. 605, 281 (2000).

    Article  CAS  Google Scholar 

  10. V. A. Melnikov, E. V. Astrova, T. S. Perova, and V. Srigengan, J. Micromech. Microeng. 18, 025019 (2008).

    Article  CAS  Google Scholar 

  11. V. Lehmann and U. Gosele, Appl. Phys. Lett. 58, 856 (1991).

    Article  CAS  Google Scholar 

  12. M. T. Ahmadi, H. H. Lau, R. Ismail, and V. K. Arora, Microelectron. J. 40, 547 (2009).

    Article  CAS  Google Scholar 

  13. S. Lazarouk, P. Jaguiro, and S. Katsouba, Appl. Phys. Lett. 68, 1646 (1996).

    Article  CAS  Google Scholar 

  14. P. Steiner, F. Kozlowski, and W. Lang, Appl. Phys. Lett. 62, 2700 (1993).

    Article  CAS  Google Scholar 

  15. Y. Kanemitsu, Phys. Rev. B: Condens. Matter Mater. Phys. 48, 4883 (1993).

    Article  CAS  Google Scholar 

  16. E. S. Kooij, K. Butter, and J. J. Kelly, Electrochem. Solid-State Lett. 2, 178 (1999).

    Article  CAS  Google Scholar 

  17. S. Li, W. Ma, Y. Zhou, X. Chen, M. Ma, Y. Xiao, and Y. Xu, J. Lumin. 146, 76 (2014).

    Article  CAS  Google Scholar 

  18. B. Schwartz and H. Robbins, J. Electrochem. Soc. 123, 1903 (1976).

    Article  CAS  Google Scholar 

  19. A. S. Mogoda and Y. H. Ahmad, Silicon 11, 2837 (2019).

    Article  CAS  Google Scholar 

  20. R. W. Fathauer, T. Georges, A. Ksendzov, and R. P. Vasquez, Appl. Phys. Lett. 60, 995 (1992).

    Article  CAS  Google Scholar 

  21. E. A. Starostina, V. V. Starkov, and A. F. Vyatkin, Russ. Microelectron. 31, 88 (2002).

    Article  CAS  Google Scholar 

  22. A. S. Mogoda, Y. H. Ahmad, and W. A. Badawy, Mater. Chem. Phys. 126, 676 (2011)

    Article  CAS  Google Scholar 

  23. K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, Adv. Mater. 14, 1164 (2002).

    Article  CAS  Google Scholar 

  24. K. Tsujino, and M. Matsumura, Adv. Mater. 17, 1045 (2005).

    Article  CAS  Google Scholar 

  25. K. Tsujino and M. Matsumura, Electrochem. Solid State Lett. 8, C193 (2005).

    Article  CAS  Google Scholar 

  26. X. H. Xia, C. M. A. Ashruf, P. J. French, and J. J. Kelly, Chem. Mater. 12, 1671 (2000).

    Article  CAS  Google Scholar 

  27. T. Qiu, X. L. Wu, G. G. Siu, and P. K. Chu, Appl. Phys. Lett. 87, 223115 (2005).

    Article  CAS  Google Scholar 

  28. K. Peng and J. Zhu, Electrochim. Acta 49, 2563 (2004).

    Article  CAS  Google Scholar 

  29. K. Peng and J. Zhu, J. Electroanal. Chem. 558, 35 (2003).

    Article  CAS  Google Scholar 

  30. S. L. Cheng, C. H. Chung, and H. C. Lee, J. Electrochem. Soc. 155, D711 (2008).

    Article  CAS  Google Scholar 

  31. C. Benoit, S. Bastide, and C. Lévy-Clément, “Elaboration of vertically aligned Si nanowire arrays by metal-assisted chemical etching” in Proceeding 23 th European Photovoltaic Solar Energy Conference, WIP-Renewable Energy (Valencia, 2008), p. 640.

  32. J. Y. Jung, Z. Guo, S. W. Jee, H. -D. Um, K. T. Park, M. S. Hyun, J. M. Yang, and J.-H. Lee, Nanotechnology 21, 445303 (2010).

    Article  CAS  Google Scholar 

  33. T. Hadjersi, N. Gabouze, E. Kooij, A. Zinine, A. Ababou, W. Chergui, H. Cheraga, S. Belhousse, and A. Djeghri, Thin Solid Films 459, 271 (2004).

    Article  CAS  Google Scholar 

  34. S. Koynov, M. S. Brandt, and M. Stutzmann, Appl. Phys. Lett. 88, 203107 (2006).

    Article  CAS  Google Scholar 

  35. S. K. Srivastava, D. Kumar, M. Sharma, R. Kumar, and P. Singh, Sol. Energy Mater. Sol. Cells 100, 33 (2012).

    Article  CAS  Google Scholar 

  36. T. Hadjersi, Appl. Surf. Sci. 253, 4156 (2007).

    Article  CAS  Google Scholar 

  37. T. Hadjersi and N. Gabouze, Phys. Stat. Solidi C 4, 2155. (2007).

    Article  CAS  Google Scholar 

  38. N. Megouda, T. Hadjersi, O. Elkechai, R. Douani, and L. Guerbous, J. Lumin. 129, 221 (2009).

    Article  CAS  Google Scholar 

  39. M. Lipinski, J. Cichoszewski, R. P. Socha, and T. Piotrowski, Acta Phys. Pol. A 116 (1 suppl.), S117 (2009).

    Article  CAS  Google Scholar 

  40. Y. Zhao, D. Li, W. Sang, D. Yang, and M. Jiang, J. Mater. Sci. 42, 8496 (2007).

    Article  CAS  Google Scholar 

  41. Y.-T. Lu and A. R. Barron, Phys. Chem. Chem. Phys. 15, 9862 (2013).

    Article  CAS  Google Scholar 

  42. X. Li, Y. Xiao, C. Yan, J-W. Song, V. Talalaev, S. L. Schweizer, K. Piekielska, A. Sprafke, J.-H. Lee, and R. B. Wehrspohn, Electrochim. Acta 94, 57 (2013).

    Article  CAS  Google Scholar 

  43. B.-S. Kim, J.-H. Sung, W.-K. Ju, M.-W. Lee, S.-G. Lee, and B.-H. O, Microelectron. Eng. 98, 395 (2012).

    Article  CAS  Google Scholar 

  44. Y. Wang, Y. P. Liu, H. L. Liang, Z. X. Mei, and X. L. Du, Phys. Chem. Chem. Phys. 15, 2345 (2013).

    Article  CAS  Google Scholar 

  45. D. Li, L. Wang, D. S. Li, N. Zhou, Z. Feng, X. Zhong, and D. Yang, Appl. Surf. Sci. 264, 621 (2013).

    Article  CAS  Google Scholar 

  46. K.-Q. Peng, X. Wang, L. Li, X.-L. Wu, and S.-T. Lee, J. Am. Chem. Soc. 132, 6872 (2010).

    Article  CAS  Google Scholar 

  47. E. C. Garnett and P. Yang, J. Am. Chem. Soc. 130, 9224 (2008).

    Article  CAS  Google Scholar 

  48. T.-C. Lin, S-C. Shiu, K.-L. Pun, H.-J. Syu, and C.-F. Lin, “Layer transfer of crystalline Si thin film by metal-assisted chemical etching concerning different H2O2/HF ratios,” in Proceedings of the 38th IEEE Photovoltaic Specialists Conference (Austin, 2012), 000346.

  49. S.-C. Shiu, S.-C. Hung, H.-J. Syu, and C.-F. Lin, J. Electrochem. Soc. 158, D95 (2011).

    Article  CAS  Google Scholar 

  50. W. McSweeney, O. Lotty, J. D. Holmes, and C. O’Dwyer, Electrochem. Soc. Trans. 35, 25 (2011).

    CAS  Google Scholar 

  51. Y. Liu, B. Chen, F. Cao, H. L. W. Chan, X. Zhao, and J. Yuan, J. Mater. Chem. 21, 17083 (2011).

    Article  CAS  Google Scholar 

  52. S.-W. Chang, J. Oh, S. T. Boles, and C. V. Thompson, Appl. Phys. Lett. 96, 153108 (2010).

    Article  CAS  Google Scholar 

  53. S. Cruz, A. Hönig-d’Orville, and J. Müller, J. Electrochem. Soc. 152, C418 (2005).

    Article  CAS  Google Scholar 

  54. W. Y. Chen, J. T. Huang, Y. C. Cheng, C. C. Chien, and C. W. Tsao, Anal. Chim. Acta 687, 97 (2011).

    Article  CAS  Google Scholar 

  55. S. Yae, T. Hirano, K. Sakabe, N. Fukumuro, and H. Matsuda, Electrochem. Soc. Trans. 25, 215 (2010).

    CAS  Google Scholar 

  56. S. Yae, K. Sakabe, N. Fukumuro, S. Sakamoto, and H. Matsuda, J. Electrochem. Soc. 158, D573 (2011).

    Article  CAS  Google Scholar 

  57. S. Yae, K. Sakabe, T. Hirano, N. Fukumuro, and H. Matsuda, Phys. Status Solidi C 8, 1769 (2011).

    Article  CAS  Google Scholar 

  58. Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang, and X. Duan, Nano Lett. 9, 4539 (2009).

    Article  CAS  Google Scholar 

  59. Y. Qu, X. Zhong, Y. Li, L. Liao, Y. Huang, and X. Duan, J. Mater. Chem. 20, 3590 (2010).

    Article  CAS  Google Scholar 

  60. J. C. Wells, Longman Pronunciation Dictionary (Pearson Longman, London, 2008).

    Google Scholar 

  61. K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, Chem. Eur. J. 12, 7942 (2006).

    Article  CAS  Google Scholar 

  62. K. W. Kolasinski, Phys. Chem. Chem. Phys. 5, 1270 (2003).

    Article  CAS  Google Scholar 

  63. C. Chartier, S. Bastide, and C. Lévy-Clément, Electrochim. Acta 53, 5509 (2008).

    Article  CAS  Google Scholar 

  64. M. D. Deffo Ayagou, T. T. Mai Tran, B. Tribollet, J. Kittel, E. Sutter, N. Ferrando, C. Mendibide, and C. D. Thual, Electrochim. Acta 282, 775e83 (2018).

  65. M. Safi, J. N. Chazalviel, M. Cherkaoui, A. Belaidi, and O. Gorochov, Electrochim. Acta 47, 2573 (2002).

    Article  CAS  Google Scholar 

  66. Y. H. Ogata, N. Yoshimi, R. Yasuda, T. Tsuboi, T. Sakka, and A. Otsuki, J. Appl. Phys. 90, 6487 (2001).

    Article  CAS  Google Scholar 

  67. D. Buttard, D. Bellet, and G. Dolino, J. Appl. Phys. 79, 8060 (1996).

    Article  CAS  Google Scholar 

  68. A. Bensaid, G. Patrat, M. Brunel, F. de Bergevin, and R. Herino, Solid State Commun. 79, 923 (1991).

    Article  CAS  Google Scholar 

  69. V. Lehmann, B. Jobst, T. Muschik, A. Kux, and V. Petrova-Koch, Jpn. J. Appl. Phys. Part 1 30, 2095 (1993).

    Article  Google Scholar 

  70. P. Pandaram, A. Saranya, S. Jothi, B. Lawrence, N. Prithivikumaran, and N. Jeyakumaran, Mater. Sci. Semicond. Process. 104, 104678 (2019).

    Article  CAS  Google Scholar 

  71. K. Barla, R. Herino, G. Bomchil, J. C. Pfister, and A. Freund, J Cryst. Growth 68, 727 (1984).

    Article  CAS  Google Scholar 

  72. D. Bellet and G. Dolino, Thin Solid Films 276, 1 (1996).

    Article  CAS  Google Scholar 

  73. J. M. Opez-Villegas, M. Navarro, D. Papadimitriou, J. Bassas, and J. Samitier, Thin Solid Films 276, 238 (1996).

    Article  Google Scholar 

  74. A. E. Pap, K. Kordás, G. Tóth, J. Levoska, A. Uusimäki, J. Vähäkangas, S. Leppävuori, and T. F. George, Appl. Phys. Lett. 86, 041501 (2005).

    Article  CAS  Google Scholar 

  75. A. M. A. Vasquez, G. A. Rodriguez, G. G. Salgado, G. R. Paredes, and R. P. Sierra, Rev. Mex. Fis. 53, 431 (2007).

    Google Scholar 

  76. A. S. Caroline, S. R. Wayne, and W. E. Kevin, Nat. Methods 9, 671 (2012).

    Article  CAS  Google Scholar 

  77. M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, J. Biophotonics Int. 11, 36 (2004).

  78. W. J. Salcedo, F. J. R. Fernandez, and E. Goleazzo, Braz. J. Phys. 27, 158 (1997).

    Google Scholar 

  79. A. Ramizy, W. J. Aziz, Z. Hassan, K. Omarand, and K. Ibrahim, Optik 122, 2075 (2011).

    Article  CAS  Google Scholar 

  80. S. Li, W. Maa, X. Chenc, K. Xie, Y. Li, X. He, X. Yang, and Y. Lei, Appl. Surf. Sci. 369, 232 (2016).

    Article  CAS  Google Scholar 

  81. J. Kim, Y. H. Kim, S. -H. Choi, and W. Lee, ACS Nano 5, 5242 (2011).

    Article  CAS  Google Scholar 

  82. H. Han, Z. Huang, and W. Lee, Nano Today 9, 271 (2014).

    Article  CAS  Google Scholar 

  83. R. Milazzo, G. D’Arrigo, C. Spinella, M. Grimaldi, and E. Rimini, ECS J. Solid State Sci. Technol. 2, P405 (2013).

    Article  CAS  Google Scholar 

  84. C. K. Sheng and D. T. Jern Ee, Results Phys. 10, 5 (2018).

    Article  Google Scholar 

  85. K. Omar, Y. Al-Dour, A. Ramizy, and Z. Hassan, Superlattices Microstruct. 50, 119 (2011).

    Article  CAS  Google Scholar 

  86. D. C. Chang, V. Baranauskas, I. Doi, and T. Prohaska, J. Porous Mater. 7, 349 (2000).

    Article  CAS  Google Scholar 

  87. O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep. 38, 126 (2000).

    Article  Google Scholar 

  88. L. Pavesi and V. Mulloni, J. Lumin. 80, 43 (1999).

    Article  Google Scholar 

  89. S. Merazga, A. Cheriet, K. M’hammedi, A. Mefoued, and N. Gabouze, Int. J. Hydrogen Energy 44, 9994 (2019).

    Article  CAS  Google Scholar 

  90. Y. Coffinier, G. Piret, M. R. Das, and R. Boukherroub, C. R. Chim. 16, 65e72 (2013).

  91. A. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944).

    Article  CAS  Google Scholar 

  92. E. C. Muñoz, C. Dıaz, E. Navarrete, R. Henríquez, R. Schrebler, R. Córdova, R. Marotti, and C. Heyser, Arabian J. Chem. 12, 5125 (2019).

    Article  CAS  Google Scholar 

  93. L. Savov, Metallurgy 51, 475 (1997).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Mustafa Shalaby acknowledges Dr. Mohamed Ali (Physics department, Faculty of science, Helwan University for his assistance in the measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Saadeldin, A. S. Mogoda or M. S. Shalaby.

Ethics declarations

No funding was received for conducting this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadeldin, M.M., Mogoda, A.S., Abdelhaleem, S. et al. Correlation of Structural, Morphological and Electrochemical Impedance Study of Electrochemically Prepared p-Type Porous Silicon. J. Surf. Investig. 15, 738–751 (2021). https://doi.org/10.1134/S1027451021040157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021040157

Keywords:

Navigation