Skip to main content
Log in

A systematic review of extracellular vesicles as non-invasive biomarkers in glioma diagnosis, prognosis, and treatment response monitoring

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The present systematic review was done to investigate the possible application of Extracellular vesicles (EVs) in the diagnosis, prognosis, and treatment response monitoring of gliomas using available literature to wrap up the final applicable conclusion in this regard. we searched PubMed/MEDLINE, Scopus, and ISI Web of Science databases. Authors evaluated the quality of the included studies by the QUADAS-2 tool. In total, 2037 published datasets were retrieved through systematic search. Upon screening for eligibility, 35 datasets were determined as eligible. Exosome was the EV-subtype described in the majority of studies, and most datasets used serum as the primary EVs isolation source. EVs isolation was primarily conducted by ultracentrifugation. 31 datasets reported that EVs hold considerable potential for being used in diagnostics, with the majority reporting different types of miRNAs as biomarkers. Besides, 8 datasets reported that EVs could be a potential source of prognostic biomarkers. And finally, 3 datasets reported that EVs might be a reliable strategy for monitoring therapy response in glioma patients. According to the findings of the current systematic review, it seems that miR-301, miR-21, and HOTAIR had the highest diagnostic accuracy. However, heterogeneous and limited evidence regarding prognosis and treatment response monitoring precludes us from drawing a practical conclusion regarding EVs.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data used in the current study are available from the corresponding author on reasonable request. Authors can confirm that all relevant data are included in the article and/or its supplementary information files.

References

  1. Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M (2006) Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2(9):494–503

    Article  PubMed  Google Scholar 

  2. Mader MM-D, Rotermund R, Martens T, Westphal M, Matschke J, Abboud T (2019) The role of frameless stereotactic biopsy in contemporary neuro-oncology: molecular specifications and diagnostic yield in biopsied glioma patients. J Neuro-Oncol 141(1):183–194

    Article  CAS  Google Scholar 

  3. Wesseling P, Capper D (2018) WHO 2016 Classification of gliomas. Neuropathol Appl Neurobiol 44(2):139–150

    Article  CAS  PubMed  Google Scholar 

  4. Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, Vazquez-Ramos C, Mahato D, Tavanaiepour D et al (2017) Advances in brain tumor surgery for glioblastoma in adults. Brain Sci 7(12):166

    Article  PubMed Central  CAS  Google Scholar 

  5. Jacob F, Salinas RD, Zhang DY, Nguyen PT, Schnoll JG, Wong SZH et al (2020) A patient-derived glioblastoma organoid model and biobank recapitulates inter-and intra-tumoral heterogeneity. Cell 180(1):188–204

    Article  CAS  PubMed  Google Scholar 

  6. Parker NR, Khong P, Parkinson JF, Howell VM, Wheeler HR (2015) Molecular heterogeneity in glioblastoma: potential clinical implications. Front Oncol 5:55

    Article  PubMed  PubMed Central  Google Scholar 

  7. Eder K, Kalman B (2014) Molecular heterogeneity of glioblastoma and its clinical relevance. Pathol Oncol Res 20(4):777–787

    Article  CAS  PubMed  Google Scholar 

  8. Prabhu RS, Won M, Shaw EG, Hu C, Brachman DG, Buckner JC et al (2014) Effect of the addition of chemotherapy to radiotherapy on cognitive function in patients with low-grade glioma: secondary analysis of RTOG 98–02. J Clin Oncol 32(6):535

    Article  PubMed  PubMed Central  Google Scholar 

  9. Upadhyay N, Waldman A (2011) Conventional MRI evaluation of gliomas. Br J Radiol 84:S107–S111

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gill BJ, Pisapia DJ, Malone HR, Goldstein H, Lei L, Sonabend A et al (2014) MRI-localized biopsies reveal subtype-specific differences in molecular and cellular composition at the margins of glioblastoma. Proc Natl Acad Sci USA 111(34):12550–12555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coumans FA, Brisson AR, Buzas EI, Dignat-George F, Drees EE, El-Andaloussi S et al (2017) Methodological guidelines to study extracellular vesicles. Circ Res 120(10):1632–1648

    Article  CAS  PubMed  Google Scholar 

  12. Yáñez-Mó M, Siljander PR-M, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4(1):27066

    Article  PubMed  Google Scholar 

  13. Lam KC, Lam MK, Chim C, Chan GC, Li JC (2020) The functional role of surface molecules on extracellular vesicles in cancer, autoimmune diseases, and coagulopathy. J Leukoc Biol 108(5):1565–1573

    Article  CAS  PubMed  Google Scholar 

  14. Anel A, Gallego-Lleyda A, de Miguel D, Naval J, Martínez-Lostao L (2019) Role of exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease. Cells 8(2):154

    Article  CAS  PubMed Central  Google Scholar 

  15. Huang T, Song C, Zheng L, Xia L, Li Y, Zhou Y (2019) The roles of extracellular vesicles in gastric cancer development, microenvironment, anti-cancer drug resistance, and therapy. Mol Cancer 18(1):1–11

    Article  CAS  Google Scholar 

  16. Yin Z, Fan J, Xu J, Wu F, Li Y, Zhou M et al (2020) Immunoregulatory roles of extracellular vesicles and associated therapeutic applications in lung cancer. Front Immunol 11:2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of extracellular vesicles 7(1):1535750

    Article  PubMed  PubMed Central  Google Scholar 

  18. Akers JC, Ramakrishnan V, Kim R, Phillips S, Kaimal V, Mao Y et al (2015) miRNA contents of cerebrospinal fluid extracellular vesicles in glioblastoma patients. J Neurooncol 123(2):205–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK, Maguire CA et al (2013) BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther-Nucleic Acids 2:e109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Figueroa JM, Skog J, Akers J, Li H, Komotar R, Jensen R et al (2017) Detection of wild-type EGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patients. Neuro Oncol 19(11):1494–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringnér M et al (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA 110(18):7312–7317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ricklefs FL, Alayo Q, Krenzlin H, Mahmoud AB, Speranza MC, Nakashima H et al (2018) Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci Adv 4(3):eaar2766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS et al (2015) Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun 6(1):1–9

    Article  Google Scholar 

  24. Skog J, Würdinger T, Van Rijn S, Meijer DH, Gainche L, Curry WT et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536

    Article  PubMed  Google Scholar 

  27. Manterola L, Guruceaga E, Pérez-Larraya JG, González-Huarriz M, Jauregui P, Tejada S et al (2014) A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro Oncol 16(4):520–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cai Q, Zhu A, Gong L (2018) Exosomes of glioma cells deliver miR-148a to promote proliferation and metastasis of glioblastoma via targeting CADM1. Bull Cancer 105(7–8):643–651

    Article  PubMed  Google Scholar 

  29. Lan F, Qing Q, Pan Q, Hu M, Yu H, Yue X (2018) Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma. Cell Oncol 41(1):25–33

    Article  CAS  Google Scholar 

  30. Lan F, Yue X, Xia T (2020) Exosomal microRNA-210 is a potentially non-invasive biomarker for the diagnosis and prognosis of glioma. Oncol Lett 19(3):1967–1974

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shao N, Xue L, Wang R, Luo K, Zhi F, Lan Q (2019) miR-454-3p is an exosomal biomarker and functions as a tumor suppressor in glioma. Mol Cancer Ther 18(2):459–469

    Article  CAS  PubMed  Google Scholar 

  32. Shi R, Wang P-Y, Li X-Y, Chen J-X, Li Y, Zhang X-Z et al (2015) Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget 6(29):26971

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang H, Jiang D, Li W, Xiang X, Zhao J, Yu B et al (2019) Evaluation of serum extracellular vesicles as noninvasive diagnostic markers of glioma. Theranostics 9(18):5347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang S, Xu Z, Zhang C, Yu R, Jiang J, Wang C et al (2020) High-throughput sequencing-based identification of serum exosomal differential miRNAs in high-grade glioma and intracranial lymphoma. BioMed Res Int 2020:1–9

    Google Scholar 

  35. Zhong F, Huang T, Leng J (2019) Serum miR-29b as a novel biomarker for glioblastoma diagnosis and prognosis. Int J Clin Exp Pathol 12(11):4106

    PubMed  PubMed Central  Google Scholar 

  36. Huang K, Fang C, Yi K, Liu X, Qi H, Tan Y et al (2018) The role of PTRF/Cavin1 as a biomarker in both glioma and serum exosomes. Theranostics 8(6):1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zeng A, Wei Z, Yan W, Yin J, Huang X, Zhou X et al (2018) Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma. Cancer Lett 436:10–21

    Article  CAS  PubMed  Google Scholar 

  38. Akers JC, Hua W, Li H, Ramakrishnan V, Yang Z, Quan K et al (2017) A cerebrospinal fluid microRNA signature as biomarker for glioblastoma. Oncotarget 8(40):68769

    Article  PubMed  PubMed Central  Google Scholar 

  39. Akers JC, Ramakrishnan V, Kim R, Skog J, Nakano I, Pingle S et al (2013) MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS ONE 8(10):e78115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cumba Garcia LM, Peterson TE, Cepeda MA, Johnson AJ, Parney IF (2019) Isolation and analysis of plasma-derived exosomes in patients with glioma. Front Oncol 9:651

    Article  PubMed  PubMed Central  Google Scholar 

  41. Koch CJ, Lustig RA, Yang X-Y, Jenkins WT, Wolf RL, Martinez-Lage M et al (2014) Microvesicles as a biomarker for tumor progression versus treatment effect in radiation/temozolomide-treated glioblastoma patients. Transl Oncol 7(6):752–758

    Article  PubMed  PubMed Central  Google Scholar 

  42. Muller L, Muller-Haegele S, Mitsuhashi M, Gooding W, Okada H, Whiteside TL (2015) Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. Oncoimmunology 4(6):e1008347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ricklefs FL, Maire CL, Matschke J, Dührsen L, Sauvigny T, Holz M et al (2020) FASN is a biomarker enriched in malignant glioma-derived extracellular vesicles. Int J Mol Sci 21(6):1931

    Article  CAS  PubMed Central  Google Scholar 

  44. Tan SK, Pastori C, Penas C, Komotar RJ, Ivan ME, Wahlestedt C et al (2018) Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme. Mol Cancer 17(1):1–7

    Article  CAS  Google Scholar 

  45. Puigdelloses M, González-Huárriz M, García-Moure M, Martínez-Vélez N, Esparragosa Vázquez I, Bruna J et al (2020) RNU6–1 in circulating exosomes differentiates GBM from non-neoplastic brain lesions and PCNSL but not from brain metastases. Neuro-Oncol Adv 2(1):010

    Google Scholar 

  46. Drusco A, Fadda P, Nigita G, Fassan M, Bottoni A, Gardiman MP et al (2018) Circulating micrornas predict survival of patients with tumors of glial origin. EBioMedicine 30:105–112

    Article  PubMed  Google Scholar 

  47. Osti D, Del Bene M, Rappa G, Santos M, Matafora V, Richichi C et al (2019) Clinical significance of extracellular vesicles in plasma from glioblastoma patients. Clin Cancer Res 25(1):266–276

    Article  CAS  PubMed  Google Scholar 

  48. Santangelo A, Imbrucè P, Gardenghi B, Belli L, Agushi R, Tamanini A et al (2018) A microRNA signature from serum exosomes of patients with glioma as complementary diagnostic biomarker. J Neurooncol 136(1):51–62

    Article  CAS  PubMed  Google Scholar 

  49. Ebrahimkhani S, Vafaee F, Hallal S, Wei H, Lee MYT, Young PE et al (2018) Deep sequencing of circulating exosomal microRNA allows non-invasive glioblastoma diagnosis. NPJ Precis Oncol 2(1):1–9

    CAS  Google Scholar 

  50. Hallal S, Ebrahim Khani S, Wei H, Lee MYT, Sim H-W, Sy J et al (2020) Deep sequencing of small RNAs from neurosurgical extracellular vesicles substantiates miR-486-3p as a circulating biomarker that distinguishes glioblastoma from lower-grade astrocytoma patients. Int J Mol Sci 21(14):4954

    Article  CAS  PubMed Central  Google Scholar 

  51. Pinet S, Bessette B, Vedrenne N, Lacroix A, Richard L, Jauberteau M-O et al (2016) TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget 7(31):50349

    Article  PubMed  PubMed Central  Google Scholar 

  52. Treps L, Edmond S, Harford-Wright E, Galan-Moya E, Schmitt A, Azzi S et al (2016) Extracellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma. Oncogene 35(20):2615–2623

    Article  CAS  PubMed  Google Scholar 

  53. Tzaridis T, Reiners KS, Weller J, Bachurski D, Schäfer N, Schaub C et al (2020) Analysis of serum miRNA in glioblastoma patients: CD44-Based enrichment of extracellular vesicles enhances specificity for the prognostic signature. Int J Mol Sci 21(19):7211

    Article  CAS  PubMed Central  Google Scholar 

  54. Chandran VI, Welinder C, Månsson A-S, Offer S, Freyhult E, Pernemalm M et al (2019) Ultrasensitive immunoprofiling of plasma extracellular vesicles identifies syndecan-1 as a potential tool for minimally invasive diagnosis of glioma. Clin Cancer Res 25(10):3115–3127

    Article  CAS  Google Scholar 

  55. Manda SV, Kataria Y, Tatireddy BR, Ramakrishnan B, Ratnam BG, Lath R et al (2018) Exosomes as a biomarker platform for detecting epidermal growth factor receptor–positive high-grade gliomas. J Neurosurg 128(4):1091–1101

    Article  CAS  PubMed  Google Scholar 

  56. Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS et al (2012) Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 18(12):1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bertram JS (2000) The molecular biology of cancer. Mol Aspects Med 21(6):167–223

    Article  CAS  PubMed  Google Scholar 

  58. Hanash SM, Baik CS, Kallioniemi O (2011) Emerging molecular biomarkers—blood-based strategies to detect and monitor cancer. Nat Rev Clin Oncol 8(3):142

    Article  PubMed  Google Scholar 

  59. Sasmita AO, Wong YP, Ling APK (2018) Biomarkers and therapeutic advances in glioblastoma multiforme. Asia Pac J Clin Oncol 14(1):40–51

    Article  PubMed  Google Scholar 

  60. Chen R, Smith-Cohn M, Cohen AL, Colman H (2017) Glioma subclassifications and their clinical significance. Neurotherapeutics 14(2):284–297

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SU (2017) Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 18(1):3

    PubMed  PubMed Central  Google Scholar 

  62. Westphal M, Lamszus K (2015) Circulating biomarkers for gliomas. Nat Rev Neurol 11(10):556–566

    Article  CAS  PubMed  Google Scholar 

  63. Basu B, Ghosh MK (2019) Extracellular vesicles in glioma: from diagnosis to therapy. BioEssays 41(7):1800245

    Article  Google Scholar 

  64. Zaporozhchenko IA, Ponomaryova AA, Rykova EY, Laktionov PP (2018) The potential of circulating cell-free RNA as a cancer biomarker: challenges and opportunities. Expert Rev Mol Diagn 18(2):133–145

    Article  CAS  PubMed  Google Scholar 

  65. Bronkhorst AJ, Ungerer V, Holdenrieder S (2019) The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif 17:100087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jafari D, Tiyuri A, Rezaei E, Moradi Y, Jafari R, Jokar Shoorijeh F et al (2020) Diagnostic accuracy of cerebrospinal fluid and serum-isolated extracellular vesicles for glioblastoma: a systematic review and meta-analysis. Expert Rev Mol Diagn 20(11):1075–1085

    Article  CAS  PubMed  Google Scholar 

  67. Lucidi A, Buca D, Ronsini C, Tinari S, Bologna G, Buca D et al (2020) Role of extracellular vesicles in epithelial ovarian cancer: a systematic review. Int J Mol Sci 21(22):8762

    Article  CAS  PubMed Central  Google Scholar 

  68. Huang T, Deng C-X (2019) Current progresses of exosomes as cancer diagnostic and prognostic biomarkers. Int J Biol Sci 15(1):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624

    Article  CAS  PubMed  Google Scholar 

  70. Lang H-L, Hu G-W, Zhang B, Kuang W, Chen Y, Wu L et al (2017) Glioma cells enhance angiogenesis and inhibit endothelial cell apoptosis through the release of exosomes that contain long non-coding RNA CCAT2. Oncol Rep 38(2):785–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu T, Wang X, Zhi T, Zhang J, Wang Y, Nie E et al (2018) Delivery of MGMT mRNA to glioma cells by reactive astrocyte-derived exosomes confers a temozolomide resistance phenotype. Cancer Lett 433:210–220

    Article  CAS  PubMed  Google Scholar 

  72. Quezada C, Torres Á, Niechi I, Uribe D, Contreras-Duarte S, Toledo F et al (2018) Role of extracellular vesicles in glioma progression. Mol Aspects Med 60:38–51

    Article  CAS  PubMed  Google Scholar 

  73. Li CC, Eaton SA, Young PE, Lee M, Shuttleworth R, Humphreys DT et al (2013) Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol 10(8):1333–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Godlewski J, Nowicki MO, Bronisz A, Nuovo G, Palatini J, De Lay M et al (2010) MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37(5):620–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chistiakov DA, Chekhonin VP (2014) Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumor Biology 35(9):8425–8438

    Article  CAS  PubMed  Google Scholar 

  76. Xu H, Zhao G, Zhang Y, Jiang H, Wang W, Zhao D et al (2019) Mesenchymal stem cell-derived exosomal microRNA-133b suppresses glioma progression via Wnt/β-catenin signaling pathway by targeting EZH2. Stem Cell Res Ther 10(1):1–14

    Article  CAS  Google Scholar 

  77. Lang FM, Hossain A, Gumin J, Momin EN, Shimizu Y, Ledbetter D et al (2018) Mesenchymal stem cells as natural biofactories for exosomes carrying miR-124a in the treatment of gliomas. Neuro Oncol 20(3):380–390

    Article  CAS  PubMed  Google Scholar 

  78. Al-Nedawi K, Meehan B, Rak J (2009) Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8(13):2014–2018

    Article  CAS  PubMed  Google Scholar 

  79. Azmi AS, Bao B, Sarkar FH (2013) Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastas Rev 32(3):623–642

    Article  CAS  Google Scholar 

  80. Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  81. Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P (2013) Delivery of functional anti-miR-9 by mesenchymal stem cell–derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther-Nucleic Acids. 2:e126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Lu JF, Pokharel D, Bebawy M (2017) A novel mechanism governing the transcriptional regulation of ABC transporters in MDR cancer cells. Drug Deliv Transl Res 7(2):276–285

    Article  CAS  PubMed  Google Scholar 

  83. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar-Onfray F et al (2016) Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget 7(41):67373

    Article  PubMed  PubMed Central  Google Scholar 

  84. Giusti I, Delle Monache S, Di Francesco M, Sanità P, D’Ascenzo S, Gravina GL et al (2016) From glioblastoma to endothelial cells through extracellular vesicles: messages for angiogenesis. Tumor Biology 37(9):12743–12753

    Article  CAS  PubMed  Google Scholar 

  85. Gutiérrez J, Droppelmann C, Salsoso R, Westermeier F, Toledo F, Salomon C et al (2016) A hypothesis for the role of RECK in angiogenesis. Curr Vasc Pharmacol 14(1):106–115

    Article  PubMed  CAS  Google Scholar 

  86. Waziri A (2010) Glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg Clin 21(1):31–42

    Article  Google Scholar 

  87. Domenis R, Cesselli D, Toffoletto B, Bourkoula E, Caponnetto F, Manini I et al (2017) Systemic T cells immunosuppression of glioma stem cell-derived exosomes is mediated by monocytic myeloid-derived suppressor cells. PLoS ONE 12(1):e0169932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. JeroendeVrij S, Kwappenberg KM, Schnoor R, Kleijn A, Dekker L, Luider TM et al (2015) Glioblastoma-derived extracellular vesicles modify the phenotype of monocytic cells. Int J Cancer 137:1630–1642

    Article  CAS  Google Scholar 

  89. Hallal S, Russell BP, Wei H, Lee MYT, Toon CW, Sy J et al (2019) Extracellular vesicles from neurosurgical aspirates identifies chaperonin containing TCP1 subunit 6A as a potential glioblastoma biomarker with prognostic significance. Proteomics 19(1–2):1800157

    Article  CAS  Google Scholar 

  90. Day BW, Stringer BW, Wilson J, Jeffree RL, Jamieson PR, Ensbey KS et al (2013) Glioma surgical aspirate: a viable source of tumor tissue for experimental research. Cancers 5(2):357–371

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zieger A, Blanckenberg P, Pozo J, Sander U, Smedema R (1988) Surgical ultrasonic aspiration of brain tumors. Modern methods in neurosurgery. Springer, New York, pp 44–51

    Chapter  Google Scholar 

  92. Tang Y-T, Huang Y-Y, Zheng L, Qin S-H, Xu X-P, An T-X et al (2017) Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med 40(3):834–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kanchanapally R, Deshmukh SK, Chavva SR, Tyagi N, Srivastava SK, Patel GK et al (2019) Drug-loaded exosomal preparations from different cell types exhibit distinctive loading capability, yield, and antitumor efficacies: a comparative analysis. Int J Nanomed 14:531

    Article  CAS  Google Scholar 

  94. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J et al (2014) The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles 3(1):24858

    Article  Google Scholar 

  95. Rekker K, Saare M, Roost AM, Kubo A-L, Zarovni N, Chiesi A et al (2014) Comparison of serum exosome isolation methods for microRNA profiling. Clin Biochem 47(1–2):135–138

    Article  CAS  PubMed  Google Scholar 

  96. Stranska R, Gysbrechts L, Wouters J, Vermeersch P, Bloch K, Dierickx D et al (2018) Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. J Transl Med 16(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zarovni N, Corrado A, Guazzi P, Zocco D, Lari E, Radano G et al (2015) Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods 87:46–58

    Article  CAS  PubMed  Google Scholar 

  98. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM et al (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56(2):293–304

    Article  CAS  PubMed  Google Scholar 

  99. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L et al (2015) STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Clin Chem 61(12):1446–1452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr.Sadegh Baradaran Mahdavi ,MD,Ph.D for his valuable comments in manuscript preparation. The authors would like to thank Gorbil for his scientific comments.

Author information

Authors and Affiliations

Authors

Contributions

AS contributed to the conception of the work, data search, data gathering, manuscript preparation, manuscript revision, final approval of the manuscript and agreed to be accountable for all aspects of the work. SS contributed to the conception of the work, data search, manuscript preparation, manuscript revision, final approval of the manuscript and agreed to be accountable for all aspects of the work. M.Sabouri contributed to manuscript supervision, revision, final approval of the manuscript and agreed to be accountable for all aspects of the work. M.Soleimani contributed to manuscript revision, final approval of the manuscript and agreed to be accountable for all aspects of the work. LD contributed to the data search, manuscript preparation, manuscript revision, final approval of the manuscript and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Arman Sourani.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interests.

Consent for publication

All the authors consent this review could be published in any form in Journal of Molecular Biology Reports, Springer publication.

Ethics approval

All the processes were under the institutional and/or national research committee's ethical standards and the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This review was supervised and approved by Isfahan University neurosurgery department board members on behalf of the Ethical Committee of Isfahan University of medical sciences.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sourani, A., Saghaei, S., Sabouri, M. et al. A systematic review of extracellular vesicles as non-invasive biomarkers in glioma diagnosis, prognosis, and treatment response monitoring. Mol Biol Rep 48, 6971–6985 (2021). https://doi.org/10.1007/s11033-021-06687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06687-1

Keywords

Navigation