Skip to main content
Log in

Genomic organization and hypoxia inducible factor responsive regulation of teleost hsp90β gene during hypoxia stress

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The physiological significance of a large family of heat-shock proteins (HSPs), comprised of the cytosolic HSP90A and the endoplasmic reticulum component of HSPB, is evident in prokaryotes and eukaryotes. The HSP90A is believed to play critical roles in diverse physiological functions of cell viability and chromosomal stability including stress management. Heightened abundance of hsp90β transcript was documented in Channa striatus, a freshwater fish, which is capable of surviving within an extremely hypoxic environment.

Methods and results

To better understand the mechanism of hsp90β gene expression, we investigated its genomic organization. Eleven exons were identified, including a long upstream intron with a remarkable similarity with human, but not with chicken counterpart. Dual-luciferase assays identified promoter activity in a 1366 bp 5′-flanking segment beyond the transcription initiation site. Examination detected a minimal promoter of 754 bp containing a TATA-box, CAAT-enhancer in addition to providing clues regarding other enhancer and repressor elements. The driving capability of this minimal promoter was further validated by its binding ability with TATA-box binding protein and the generation of GFP expressing transgenic zebrafish (F2). Further, deletion of an inverted HIF (hypoxia inducible factor) motif RCGTG (upstream of the TATA-box) dramatically reduced luciferase expression in a hypoxic environment (CoCl2 treated cultivable cells) and was identified as a cis-acting HIF responsive element, necessary for the hypoxia-induced expression.

Conclusions

The results obtained herein provide an insight regarding how hsp90β gene expression is controlled by HIF responsive element in teleost both during hypoxia stress management and normal physiological functions, and suggested that the hsp90β gene promoter could be used as a potential candidate for generating ornamental and food-fish transgenics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Saito Y, Li L, Coyaud E, Luna A, Sander C, Raught B, Asara JM, Brown M, Muthuswamy SK (2019) LLGL2 rescues nutrient stress by promoting leucine uptake in ER(+) breast cancer. Nature 569(7755):275–279. https://doi.org/10.1038/s41586-019-1126-2

    Article  CAS  PubMed  Google Scholar 

  2. Lanneau D, de Thonel A, Maurel S, Didelot C, Garrido C (2007) Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 1(1):56–60. https://doi.org/10.4161/pri.1.1.4059

    Article  Google Scholar 

  3. Stephanou A, Latchman DS (1999) Transcriptional regulation of the heat shock protein genes by STAT family transcription factors. Gene Expr 7(4–6):311–319

    CAS  PubMed  Google Scholar 

  4. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12(24):3788–3796

    Article  CAS  Google Scholar 

  5. Basu S, Totty NF, Irwin MS, Sudol M, Downward J (2003) Akt phosphorylates the yes-associated protein, YAP, to induce interaction with 14–3-3 and attenuation of p73-mediated apoptosis. Mol Cell 11(1):11–23. https://doi.org/10.1016/s1097-2765(02)00776-1

    Article  CAS  PubMed  Google Scholar 

  6. Hightower LE, Norris CE, Diiorio PJ, Fielding E (2015) Heat shock responses of closely related species of tropical and desert fish. Am Zool 39(6):877–888. https://doi.org/10.1093/icb/39.6.877

    Article  Google Scholar 

  7. Chen B, Zhong D, Monteiro A (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics. https://doi.org/10.1186/1471-2164-7-156

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hoter A, El-Sabban ME, Naim HY (2018) The HSP90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci 19(9):2560. https://doi.org/10.3390/ijms19092560

    Article  CAS  PubMed Central  Google Scholar 

  9. Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79(2):129–168. https://doi.org/10.1016/s0163-7258(98)00013-8

    Article  CAS  PubMed  Google Scholar 

  10. Crevel G, Bates H, Huikeshoven H, Cotterill S (2001) The Drosophila Dpit47 protein is a nuclear Hsp90 co-chaperone that interacts with DNA polymerase alpha. J Cell Sci 114(11):2015–2025

    Article  CAS  Google Scholar 

  11. Voss AK, Thomas T, Gruss P (2000) Mice lacking HSP90beta fail to develop a placental labyrinth. Development 127(1):1–11

    Article  CAS  Google Scholar 

  12. Grad I, Cederroth CR, Walicki J, Grey C, Barluenga S, Winssinger N, De Massy B, Nef S, Picard D (2010) The molecular chaperone Hsp90alpha is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS ONE 5(12):e15770. https://doi.org/10.1371/journal.pone.0015770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pearl LH (2005) Hsp90 and Cdc37-/- a chaperone cancer conspiracy. Curr Opin Genet Dev 15:55–61. https://doi.org/10.1016/j.gde.2004.12.011

    Article  CAS  PubMed  Google Scholar 

  14. Horejsi Z, Takai H, Adelman CA, Collis SJ, Flynn H, Maslen S, Skehel JM, de Lange T, Boulton SJ (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39(6):839–850. https://doi.org/10.1016/j.molcel.2010.08.037

    Article  CAS  PubMed  Google Scholar 

  15. Makhnevych T, Houry WA (2012) The role of Hsp90 in protein complex assembly. Biochim Biophys Acta 1823(3):674–682. https://doi.org/10.1016/j.bbamcr.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  16. Garcia de la Serrana D, Johnston IA (2013) Expression of heat shock protein (Hsp90) paralogues is regulated by amino acids in skeletal muscle of Atlantic salmon. PLoS One 8(9):e74295

    Article  Google Scholar 

  17. Kaplan KB, Li R (2012) A prescription for ‘stress’-the role of Hsp90 in genome stability and cellular adaptation. Trends Cell Biol 22(11):576–583. https://doi.org/10.1016/j.tcb.2012.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Delaney MA, Klesius PH (2004) Hypoxic conditions induce Hsp70 production in blood, brain and head kidney of juvenile Nile tilapia Oreochromis niloticus (L.). Aquaculture 236(1):633–644. https://doi.org/10.1016/j.aquaculture.2004.02.025

    Article  CAS  Google Scholar 

  19. Chen JD, Yew FH, Li GC (1988) Thermal adaptation and heat shock response of Tilapia ovary cells. J Cell Physiol 134(2):189–199. https://doi.org/10.1002/jcp.1041340204

    Article  CAS  PubMed  Google Scholar 

  20. Kwon G, Sungho G (2019) Isolation and characterization of heat shock protein 90 in Kumgang fat minnow Rhynchocypris kumgangensis. Cytologia 84:299–308

    Article  CAS  Google Scholar 

  21. Kayhan FE, Duman BS (2010) Heat shock protein genes in fish. Turk J Fish Aquat Sci 10:287–293. https://doi.org/10.4194/trjfas.2010.0218

    Article  Google Scholar 

  22. Yang C, Wang L, Liu C, Zhou Z, Zhao X, Song L (2015) The polymorphisms in the promoter of HSP90 gene and their association with heat tolerance of bay scallop. Cell Stress Chaperones 20(2):297–308

    Article  CAS  Google Scholar 

  23. Pu Y, Zhu J, Wang H, Zhang X, Hao J, Wu Y, Geng Y, Wang K, Li Z, Zhou J, Chen D (2016) Molecular characterization and expression analysis of Hsp90 in Schizothorax prenanti. Cell Stress Chaperones 21(6):983–991

    Article  CAS  Google Scholar 

  24. Chuanjie Q, Ting S, Huiguo D (2016) The cloning of a heat shock protein 90β gene and expression analysis in Botia reevesae after ammonia-N exposure and Aeromonas hydrophila challenge. Aquac Rep 3:159–165

    Article  Google Scholar 

  25. Mosser DD, Van Oostrom J, Bols NC (1987) Induction and decay of thermotolerance in rainbow trout fibroblasts. J Cell Physiol 132(1):155–160. https://doi.org/10.1002/jcp.1041320122

    Article  CAS  PubMed  Google Scholar 

  26. Sanders BM (1993) Stress proteins in aquatic organisms: an environmental perspective. Crit Rev Toxicol 23(1):49–75. https://doi.org/10.3109/10408449309104074

    Article  CAS  PubMed  Google Scholar 

  27. Grosvik BE, Goksoyr A (1996) Biomarker protein expression in primary cultures of salmon (Salmo salar L.) hepatocytes exposed to environmental pollutants. Biomarkers 1(1):45–53. https://doi.org/10.3109/13547509609079346

    Article  CAS  PubMed  Google Scholar 

  28. Hassanein HM, Banhawy MA, Soliman FM, Abdel-Rehim SA, Muller WE, Schroder HC (1999) Induction of hsp70 by the herbicide oxyfluorfen (goal) in the Egyptian Nile fish, Oreochromis niloticus. Arch Environ Contam Toxicol 37(1):78–84. https://doi.org/10.1007/s002449900492

    Article  CAS  PubMed  Google Scholar 

  29. Wang PF, Zeng S, Xu P, Zhou L, Li GF (2016) Two HSP90 genes in mandarin fish Siniperca chuatsi: identification, characterization and their specific expression profiles during embryogenesis and under stresses. Fish Physiol Biochem 42(4):1123–1136

    Article  CAS  Google Scholar 

  30. Meng X, Jerome V, Devin J, Baulieu EE, Catelli MG (1993) Cloning of chicken hsp90 beta: the only vertebrate hsp90 insensitive to heat shock. Biochem Biophys Res Commun 190(2):630–636. https://doi.org/10.1006/bbrc.1993.1095

    Article  CAS  PubMed  Google Scholar 

  31. Meng X, Baulieu EE, Catelli MG (1995) Isolation of chicken hsp90 beta gene promoter. Biochem Biophys Res Commun 206(2):644–651. https://doi.org/10.1006/bbrc.1995.1091

    Article  CAS  PubMed  Google Scholar 

  32. Rebbe NF, Hickman WS, Ley TJ, Stafford DW, Hickman S (1989) Nucleotide sequence and regulation of a human 90-kDa heat shock protein gene. J Biol Chem 264(25):15006–15011. https://doi.org/10.1016/0378-1119(87)90012-6

    Article  CAS  PubMed  Google Scholar 

  33. Prodromou C (2016) Mechanisms of Hsp90 regulation. Biochem J 473(16):2439–2452. https://doi.org/10.1042/BCJ20160005

    Article  CAS  PubMed  Google Scholar 

  34. Martin KLM, Graham JB (1998) Air-breathing fishes: evolution, diversity, and adaptation. Copeia 1998(1):1–254

    Article  Google Scholar 

  35. Mohapatra S, Chakraborty T, Kumar V, DeBoeck G, Mohanta KN (2013) Aquaculture and stress management: a review of probiotic intervention. J Anim Physiol Anim Nutr 97(2013):405–430

    Article  CAS  Google Scholar 

  36. Mohapatra SD, Chakrapani V, Rasal KD, Subudhi E, Barman HK (2017) Hypoxia-induced gene expression profiling in the liver of freshwater fish, Channa Striatus. Turk J Fish Aquat Sci 17:565–579. https://doi.org/10.4194/1303-2712-v17_3_13

    Article  Google Scholar 

  37. Barman HK, Das V, Mohanta R, Mohapatra C, Panda RP, Jayasankar P (2010) Expression analysis of β-actin promoter of rohu (Labeo rohita) by direct injection into muscle. Curr Sci 99(8):1030–1032

    CAS  Google Scholar 

  38. Mohapatra C, Patra SK, Panda RP, Mohanta R, Saha A, Saha JN, Mahapatra KD, Jayasankar P, Barman HK (2014) Gene structure and identification of minimal promoter of Pou2 expressed in spermatogonial cells of rohu carp, Labeo rohita. Mol Biol Rep 41(6):4123–4132. https://doi.org/10.1007/s11033-014-3283-6

    Article  CAS  PubMed  Google Scholar 

  39. Patra SK, Chakrapani V, Panda RP, Mohapatra C, Jayasankar P, Barman HK (2015) First evidence of molecular characterization of rohu carp Sox2 gene being expressed in proliferating spermatogonial cells. Theriogenology 84(2):268–276. https://doi.org/10.1016/j.theriogenology.2015.03.017

    Article  CAS  PubMed  Google Scholar 

  40. Mohapatra C, Barman HK (2014) Identification of promoter within the first intron of Plzf gene expressed in carp spermatogonial stem cells. Mol Biol Rep 41(10):6433–6440. https://doi.org/10.1007/s11033-014-3525-7

    Article  CAS  PubMed  Google Scholar 

  41. Mohanta R, Jayasankar P, Mahapatra KD, Saha JN, Barman HK (2014) Molecular cloning, characterization and functional assessment of the myosin light polypeptide chain 2 (mylz2) promoter of farmed carp, Labeo rohita. Transgenic Res 23(4):601–607. https://doi.org/10.1007/s11248-014-9798-8

    Article  CAS  PubMed  Google Scholar 

  42. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost HJ, Kanki JP, Chien CB (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236(11):3088–3099. https://doi.org/10.1002/dvdy.21343

    Article  CAS  PubMed  Google Scholar 

  43. Zhong Y, Huang W, Du J, Wang Z, He J, Luo L (2019) Improved Tol2-mediated enhancer trap identifies weakly expressed genes during liver and beta cell development and regeneration in zebrafish. J Biol Chem 294(3):932–940. https://doi.org/10.1074/jbc.RA118.005568

    Article  CAS  PubMed  Google Scholar 

  44. Hu CJ, Iyer S, Sataur A, Covello KL, Chodosh LA, Simon MC (2006) Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells. Mol Cell Biol 26(9):3514–3526. https://doi.org/10.1128/MCB.26.9.3514-3526.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dai ZJ, Gao J, Ma XB, Yan K, Liu XX, Kang HF, Ji ZZ, Guan HT, Wang XJ (2012) Up-regulation of hypoxia inducible factor-1alpha by cobalt chloride correlates with proliferation and apoptosis in PC-2 cells. J Exp Clin Cancer Res. https://doi.org/10.1186/1756-9966-31-28

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu D, Yotnda P (2011) Induction and testing of hypoxia in cell culture. J Vis Exp 54:e2899. https://doi.org/10.3791/2899

    Article  Google Scholar 

  47. Mohapatra SD, Kumar K, Jayasankar P, Barman HK (2013) Establishment of dry-down hypoxic stress treatment protocol for snakehead freshwater fish, Channa striatus. Int J Fish Aquat Stud 1(2):36–39

    Google Scholar 

  48. Thanos D, Gregoriou M, Stravopodis D, Liapaki K, Makatounakis T, Papamatheakis J (1993) The MHC class II E beta promoter: a complex arrangement of positive and negative elements determines B cell and interferon-gamma (IFN-gamma) regulated expression. Nucleic Acids Res 21(25):6010–6019. https://doi.org/10.1093/nar/21.25.6010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Peyton M, Moss LG, Tsai MJ (1994) Two distinct class A helix-loop-helix transcription factors, E2A and BETA1, form separate DNA binding complexes on the insulin gene E box. J Biol Chem 269(41):25936–25941. https://doi.org/10.1016/S0021-9258(18)47336-X

    Article  CAS  PubMed  Google Scholar 

  50. Cowell IG, Hurst HC (1994) Transcriptional repression by the human bZIP factor E4BP4: definition of a minimal repression domain. Nucleic Acids Res 22(1):59–65. https://doi.org/10.1093/nar/22.1.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kiefer SM, McDill BW, Yang J, Rauchman M (2002) Murine Sall1 represses transcription by recruiting a histone deacetylase complex. J Biol Chem 277(17):14869–14876. https://doi.org/10.1074/jbc.M200052200

    Article  CAS  PubMed  Google Scholar 

  52. Barman HK, Rasal KD, Chakrapani V, Ninawe AS, Vengayil DT, Asrafuzzaman S, Sundaray JK, Jayasankar P (2017) Gene editing tools: state-of-the-art and the road ahead for the model and non-model fishes. Transgenic Res 26(5):577–589. https://doi.org/10.1007/s11248-017-0030-5

    Article  CAS  PubMed  Google Scholar 

  53. Chakrapani V, Patra SK, Panda RP, Rasal KD, Jayasankar P, Barman HK (2016) Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9. Dev Comp Immunol 61:242–247. https://doi.org/10.1016/j.dci.2016.04.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by DBT and DST Women Scientist Scheme, Govt. of India. We thank Dr. Scott Steward-Tharp, Department of Pathology, University of Iowa for grammatical reviewing.

Author information

Authors and Affiliations

Authors

Contributions

HKB: overall designing and execution of the project, manuscript writing. SDM, SM, MMS and KP: gene characterization experiments, Writing—original draft, reviews and editing. VC, BM, RKS: transgenic experiments, maintenance of zebrafish and manuscript editing.

Corresponding author

Correspondence to Hirak Kumar Barman.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman, H.K., Mohapatra, S.D., Chakrapani, V. et al. Genomic organization and hypoxia inducible factor responsive regulation of teleost hsp90β gene during hypoxia stress. Mol Biol Rep 48, 6491–6501 (2021). https://doi.org/10.1007/s11033-021-06657-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06657-7

Keywords

Navigation