Skip to main content
Log in

Lanthanide type of cerium sulfide embedded carbon nitride composite modified electrode for potential electrochemical detection of sulfaguanidine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Environmental sustainability is threatened by the widespread exploitation and unfettered release of chemical pollutants that require immediate detection and eradication. An instantaneous quantification technique is essential to understand the physiological roles of the antibacterial drug sulfaguanidine (SGN) in biological systems. The present work features the green and environmentally benign synthesis of rare earth metal sulfide nanorods incorporated carbon nitrides sheets (Ce2S3@CNS) by deep eutectic solvent-based fabrication with remarkable electrochemical properties. The morphological and structural analyses of the prepared electrocatalyst were characterized using various techniques including SEM, XRD, XPS, and EIS. The heterojunction of regimented structures bids synergistic quantum confinement effects and refines charge carriers endorsing enormous active sites. Furthermore, the obtained Ce2S3@CNS/GCE possess an exceedingly lower limit of detection (0.0053 μM) and high sensitivity of 8.685 μA·μM−1·cm−2 with superior electrocatalytic action and virtuous stability for the detection of SGN. This modified electrode could afford linearity in the range 0.01–1131.5 μM measured at 0.95 V (vs. Ag/AgCl) correlated to the concentration of SGN. Examining the real samples with this advanced electrocatalyst would support its hands-on applications in everyday life. Development of such innovative architectures with fewer energy necessities and nominal by-products scripts the superiority in characteristic synthetic methodology following the guidelines of green chemistry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bogdanov S (2006) Contaminants of bee products. Apidologie 37:1–18

    Article  CAS  Google Scholar 

  2. Govindasamy M, Wang S-F, Jothiramalingam R, Ibrahim SN, Al-Lohedan HA (2019) A screen-printed electrode modified with tungsten disulfide nanosheets for nanomolar detection of the arsenic drug roxarsone. Microchim Acta 186:1–10

    Article  CAS  Google Scholar 

  3. Llor C, Bjerrum L (2014) Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Therapeutic Adv Drug Safety 5:229–241

    Article  Google Scholar 

  4. Rajaji U, Chinnapaiyan S, Chen S-M, Mani G, Alothman AA, Alshgari RA (2021) Bismuth telluride decorated on graphitic carbon nitrides based binary nanosheets: Its application in electrochemical determination of salbutamol (feed additive) in meat samples. J Hazard Mater 413:125265. https://doi.org/10.1016/j.jhazmat.2021.125265

  5. Gentili A, Perret D, Marchese S (2005) Liquid chromatography-tandem mass spectrometry for performing confirmatory analysis of veterinary drugs in animal-food products. TrAC Trends Anal Chem 24:704–733

    Article  CAS  Google Scholar 

  6. Arroyo-Manzanares N, Gámiz-Gracia L, García-Campaña AM (2014) Alternative sample treatments for the determination of sulfonamides in milk by HPLC with fluorescence detection. Food Chem 143:459–464

    Article  CAS  PubMed  Google Scholar 

  7. Chiavarino B, Crestoni ME, Di Marzio A, Fornarini S (1998) Determination of sulfonamide antibiotics by gas chromatography coupled with atomic emission detection. J Chromatogr B Biomed Sci Appl 706:269–277

    Article  CAS  PubMed  Google Scholar 

  8. Banerjee M, Poddar A, Mitra G, Surolia A, Owa T, Bhattacharyya B (2005) Sulfonamide drugs binding to the colchicine site of tubulin: thermodynamic analysis of the drug− tubulin interactions by isothermal titration calorimetry. J Med Chem 48:547–555

    Article  CAS  PubMed  Google Scholar 

  9. Chen S-M, Manavalan S, Rajaji U, Govindasamy M, Chen T-W, Ali MA, Alnakhli AK, Al-Hemaid FM, Elshikh M (2018) Determination of the antioxidant propyl gallate in meat by using a screen-printed electrode modified with CoSe 2 nanoparticles and reduced graphene oxide. Microchim Acta 185:1–9

    Article  CAS  Google Scholar 

  10. Boopathy G, Govindasamy M, Nazari M, Wang S-F, Umapathy M (2019) Facile synthesis of tungsten carbide nanosheets for trace level detection of toxic mercury ions in biological and contaminated sewage water samples: an electrocatalytic approach. J Electrochem Soc 166:B761–B770

    Article  CAS  Google Scholar 

  11. Manavalan S, Rajaji U, Chen S-M, Govindasamy M, Selvin SSP, Chen T-W, Ali MA, Al-Hemaid FM, Elshikh M (2019) Sonochemical synthesis of bismuth (III) oxide decorated reduced graphene oxide nanocomposite for detection of hormone (epinephrine) in human and rat serum. Ultrason Sonochem 51:103–110

    Article  CAS  PubMed  Google Scholar 

  12. Govindasamy M, Chen S-M, Mani V, Sathiyan A, Merlin JP, Al-Hemaid FM, Ali MA (2016) Simultaneous determination of dopamine and uric acid in the presence of high ascorbic acid concentration using cetyltrimethylammonium bromide–polyaniline/activated charcoal composite. RSC Adv 6:100605–100613

    Article  CAS  Google Scholar 

  13. Zhang Y, Chen X (2019) Nanotechnology and nanomaterial-based no-wash electrochemical biosensors: from design to application. Nanoscale 11:19105–19118

    Article  CAS  PubMed  Google Scholar 

  14. Sakthivel K, Mani G, Chen S-M, Lin S-H, Muthumariappan A, Mani V (2018) A novel synthesis of non-aggregated spinel nickel ferrite nanosheets for developing non-enzymatic reactive oxygen species sensor in biological samples. J Electroanal Chem 820:161–167

    Article  CAS  Google Scholar 

  15. Bibi N, Xia Y, Ahmed S, Zhu Y, Zhang S, Iqbal A (2018) Highly stable mesoporous CeO2/CeS2 nanocomposite as electrode material with improved supercapacitor electrochemical performance. Ceram Int 44:22262–22270

    Article  CAS  Google Scholar 

  16. Mani V, Selvaraj S, Jeromiyas N, Huang S-T, Ikeda H, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C, Salama KN (2020) Growth of large-scale MoS 2 nanosheets on double layered ZnCo 2 O 4 for real-time in situ H 2 S monitoring in live cells. J Mater Chem B 8:7453–7465

    Article  CAS  PubMed  Google Scholar 

  17. Elumalai S, Mani V, Jeromiyas N, Ponnusamy VK, Yoshimura M (2020) A composite film prepared from titanium carbide Ti 3 C 2 T x (MXene) and gold nanoparticles for voltammetric determination of uric acid and folic acid. Microchim Acta 187:1–10

    Article  CAS  Google Scholar 

  18. Alanko GA, Butt DP (2014) Mechanochemical synthesis of cerium monosulfide. J Am Ceram Soc 97:2357–2359

    Article  CAS  Google Scholar 

  19. Mutharani B, Keerthi M, Chen S-M, Ranganathan P, Chen T-W, Lee S-Y, Chang W-H (2019) One-pot sustainable synthesis of Ce2S3/gum arabic carbon flower nanocomposites for the detection of insecticide imidacloprid. ACS Appl Mater Interfaces 12:4980–4988

    Article  CAS  Google Scholar 

  20. Li C, Wang Y, Jiang H, Wang X (2020) Biosensors based on advanced sulfur-containing nanomaterials. Sensors 20:3488

    Article  CAS  PubMed Central  Google Scholar 

  21. Wang Y, Du P, Pan H, Fu L, Zhang Y, Chen J, Du Y, Tang N, Liu G (2019) Increasing solar absorption of atomically thin 2D carbon nitride sheets for enhanced visible-light photocatalysis. Adv Mater 31:1807540

    Article  CAS  Google Scholar 

  22. Sriram B, Baby JN, Wang S-F, Govindasamy M, George M, Jothiramalingam R (2020) Cobalt molybdate nanorods decorated on boron-doped graphitic carbon nitride sheets for electrochemical sensing of furazolidone. Microchim Acta 187:1–9

    Article  CAS  Google Scholar 

  23. Rajaji U, Chen T-W, Chinnapaiyan S, Chen S-M, Govindasamy M (2020) Two-dimensional binary nanosheets (Bi2Te3@ g-C3N4): application toward the electrochemical detection of food toxic chemical. Anal Chim Acta 1125:220–230

    Article  CAS  PubMed  Google Scholar 

  24. Ghosh D, Periyasamy G, Pandey B, Pati SK (2014) Computational studies on magnetism and the optical properties of transition metal embedded graphitic carbon nitride sheets. J Mater Chem C 2:7943–7951

    Article  CAS  Google Scholar 

  25. Rajaji U, Chinnapaiyan S, Chen S-M, Govindasamy M, Oliveira Filho JID, Khushaim W, Mani V (2021) Design and fabrication of yttrium ferrite garnet-embedded graphitic carbon nitride: a sensitive electrocatalyst for smartphone-enabled point-of-care pesticide (mesotrione) analysis in food samples. ACS Appl Mater Interfaces 12:24865–24876

  26. Rajaji U, Chinnapaiyan S, Chen T-W, Chen S-M, Mani G, Mani V, Ali MA, Al-Hemaid FM, El-Shikh MS (2021) Rational construction of novel strontium hexaferrite decorated graphitic carbon nitrides for highly sensitive detection of neurotoxic organophosphate pesticide in fruits. Electrochim Acta 371:137756

    Article  CAS  Google Scholar 

  27. Chen Z, Lu M (2018) Thionine-coordinated BCN nanosheets for electrochemical enzyme immunoassay of lipocalin-2 on biofunctionalized carbon-fiber microelectrode. Sensors Actuators B Chem 273:253–259

    Article  CAS  Google Scholar 

  28. Zhang S, Ye M, Chen S, Han A, Zang Y (2016) Synthesis and characterization of mica/γ-Ce2− xYxS3 composite red pigments with UV absorption and high NIR reflectance. Ceram Int 42:16023–16030

    Article  CAS  Google Scholar 

  29. Govindasamy M, Wang S-F, Almahri A, Rajaji U (2021) Effects of sonochemical approach and induced contraction of core–shell bismuth sulfide/graphitic carbon nitride as an efficient electrode materials for electrocatalytic detection of antibiotic drug in foodstuffs. Ultrason Sonochem 72:105445

    Article  CAS  PubMed  Google Scholar 

  30. Nehru R, Hsu Y-F, Wang S-F, Dong C-D, Govindasamy M, Habila MA, AlMasoud N (2021) Graphene oxide@ Ce-doped TiO2 nanoparticles as electrocatalyst materials for voltammetric detection of hazardous methyl parathion. Microchim Acta 188:1–11

    Article  CAS  Google Scholar 

  31. Cao J, Qin C, Wang Y, Zhang H, Sun G, Zhang Z (2017) Solid-state method synthesis of SnO2-decorated g-C3N4 nanocomposites with enhanced gas-sensing property to ethanol. Materials 10:604

    Article  PubMed Central  CAS  Google Scholar 

  32. Sriram B, Baby JN, Wang S-F, Ranjitha RM, Govindasamy M, George M (2020) Eutectic solvent-mediated synthesis of NiFe-LDH/sulfur-doped carbon nitride arrays: investigation of electrocatalytic activity for the dimetridazole sensor in human sustenance. ACS Sustainable Chem Eng 8:17772–17782

    Article  CAS  Google Scholar 

  33. Rajaji U, Selvi SV, Chen S-M, Chinnapaiyan S, Chen T-W, Govindasamy M (2020) A nanocomposite consisting of cuprous oxide supported on graphitic carbon nitride nanosheets for non-enzymatic electrochemical sensing of 8-hydroxy-2′-deoxyguanosine. Microchim Acta 187:1–10

    Article  CAS  Google Scholar 

  34. Rahman MM, Ahmed J, Asiri AM (2017) A glassy carbon electrode modified with γ-Ce 2 S 3-decorated CNT nanocomposites for uric acid sensor development: a real sample analysis. RSC Adv 7:14649–14659

    Article  CAS  Google Scholar 

  35. Fantauzzi M, Elsener B, Atzei D, Rigoldi A, Rossi A (2015) Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv 5:75953–75963

    Article  CAS  Google Scholar 

  36. Fang J, Fan H, Li M, Long C (2015) Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution. J Mater Chem A 3:13819–13826

    Article  CAS  Google Scholar 

  37. Chang F, Li C, Luo J, Xie Y, Deng B, Hu X (2015) Enhanced visible-light-driven photocatalytic performance of porous graphitic carbon nitride. Appl Surf Sci 358:270–277

    Article  CAS  Google Scholar 

  38. Kiuchi H, Kondo T, Sakurai M, Guo D, Nakamura J, Niwa H, Miyawaki J, Kawai M, Oshima M, Harada Y (2016) Characterization of nitrogen species incorporated into graphite using low energy nitrogen ion sputtering. Phys Chem Chem Phys 18:458–465

    Article  CAS  PubMed  Google Scholar 

  39. Pels J, Kapteijn F, Moulijn J, Zhu Q, Thomas K (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33:1641–1653

    Article  CAS  Google Scholar 

  40. Orlando F, Lacovig P, Dalmiglio M, Baraldi A, Larciprete R, Lizzit S (2016) Synthesis of nitrogen-doped epitaxial graphene via plasma-assisted method: role of the graphene–substrate interaction. Surf Sci 643:214–221

    Article  CAS  Google Scholar 

  41. Mani V, Govindasamy M, Chen S-M, Chen T-W, Kumar AS, Huang S-T (2017) Core-shell heterostructured multiwalled carbon nanotubes@ reduced graphene oxide nanoribbons/chitosan, a robust nanobiocomposite for enzymatic biosensing of hydrogen peroxide and nitrite. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  42. Govindasamy M, Chen S-M, Mani V, Akilarasan M, Kogularasu S, Subramani B (2017) Nanocomposites composed of layered molybdenum disulfide and graphene for highly sensitive amperometric determination of methyl parathion. Microchim Acta 184:725–733

    Article  CAS  Google Scholar 

  43. Govindasamy M, Umamaheswari R, Chen S-M, Mani V, Su C (2017) Graphene oxide nanoribbons film modified screen-printed carbon electrode for real-time detection of methyl parathion in food samples. J Electrochem Soc 164:B403–B408

    Article  CAS  Google Scholar 

  44. Pavlović DM, Nikšić K, Livazović S, Brnardić I, Anžlovar A (2015) Preparation and application of sulfaguanidine-imprinted polymer on solid-phase extraction of pharmaceuticals from water. Talanta 131:99–107

    Article  CAS  Google Scholar 

  45. Moretti S, Cruciani G, Romanelli S, Rossi R, Saluti G, Galarini R (2016) Multiclass method for the determination of 62 antibiotics in milk. J Mass Spectrom 51:792–804

    Article  CAS  PubMed  Google Scholar 

  46. Franek M, Diblikova I, Cernoch I, Vass M, Hruska K (2006) Broad-specificity immunoassays for sulfonamide detection: immunochemical strategy for generic antibodies and competitors. Anal Chem 78:1559–1567

    Article  CAS  PubMed  Google Scholar 

  47. Sajid M, Na N, Safdar M, Lu X, Ma L, He L, Ouyang J (2013) Rapid trace level determination of sulfonamide residues in honey with online extraction using short C-18 column by high-performance liquid chromatography with fluorescence detection. J Chromatogr A 1314:173–179

    Article  CAS  PubMed  Google Scholar 

  48. Dasenaki ME, Bletsou AA, Koulis GA, Thomaidis NS (2015) Qualitative multiresidue screening method for 143 veterinary drugs and pharmaceuticals in milk and fish tissue using liquid chromatography quadrupole-time-of-flight mass spectrometry. J Agric Food Chem 63:4493–4508

    Article  CAS  PubMed  Google Scholar 

  49. Ji H, Wu Y, Duan Z, Yang F, Yuan H, Xiao D (2017) Sensitive determination of sulfonamides in environmental water by capillary electrophoresis coupled with both silvering detection window and in-capillary optical fiber light-emitting diode-induced fluorescence detector. Electrophoresis 38:452–459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Researchers Supporting Project Number (RSP-2021/243) King Saud University, Riyadh, Saudi Arabia.

Funding

This work was supported by the Ministry of Science and Technology (Special Research Project-MOST-108-2221-E-027-063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sea-Fue Wang or Rameshkumar Arumugam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priscillal, I.J.D., Alothman, A.A., Wang, SF. et al. Lanthanide type of cerium sulfide embedded carbon nitride composite modified electrode for potential electrochemical detection of sulfaguanidine. Microchim Acta 188, 313 (2021). https://doi.org/10.1007/s00604-021-04975-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04975-y

Keywords

Navigation