Skip to main content

Advertisement

Log in

Operational parameters influenced on biogas production in zeolite/anaerobic baffled reactor for compost leachate treatment

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Nowadays, anaerobic processes are used for leachate treatment and biogas production that can be used as a source of renewable and eco-friendly energy. However, for optimal performance of the anaerobic system for gas production, an appropriate method must be used to reduce the inhibitors in the leachate. In this study an anaerobic baffled reactor (ABR) was used for investigating impact of OLR on biogas production and changes of alkalinity and pH. In order to decline inhibitors concentration on anaerobic microorganisms, zeolite was considered as a media and changes of biogas production was surveyed in different filling ratios. The highest produced biogas at the filling ratios of 10 %, 20 and 30 % were 0.6, 0.63 and 0.9 L/day, respectively and OLR increasing resulted in increase in produced biogas. The values of alkalinity and pH remained in the optimum range for methanogenic bacteria. In all three filling ratios, concentration of ammonia increased with increasing organic loading rate but it has not adverse effect on biogas production. Despite of high concentration of heavy metals, anaerobic baffled reactor with zeolite provided suitable condition for anaerobic microorganisms and biogas production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kurniawan TA, Lo W-H, Chan GYS. Degradation of recalcitrant compounds from stabilized landfill leachate using a combination of ozone-GAC adsorption treatment. J Hazard Mater. 2006;137(1):443–55.

    Article  CAS  Google Scholar 

  2. Hashemi H, Khodabakhshi A. Complete treatment of compost leachate using integrated biological and membrane filtration processes. Iran J Chem Chem Eng-Int Engl Ed. 2016;35(4):81–7.

    CAS  Google Scholar 

  3. Sadani M, Amin MM, Karami MA, Teimouri F. Biodegradability improvement of composting leachate by sulfate radical-advanced oxidation process followed by aerobic and anaerobic treatmentcomparison of biodegradability improvement of composting leachate by sulfate radical-advanced oxidation process for aerobic and anaerobic treatment. Int J Environ Health Eng. 2019;8(1):1.

    Article  CAS  Google Scholar 

  4. Ağdağ ON, Sponza DT. Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) systems. Process Biochem. 2005;40(2):895–902.

    Article  Google Scholar 

  5. Hua J, Bai SY, Li ZY, Zhou HC. Treatment of landfill leachate using an up-flow anaerobic sludge semi-fixed filter. IOP Conf Ser: Earth Environ Sci. 2017;82:012066.

  6. Wu J, Zhang J, Poncin S, Li HZ, Jiang J, Rehman ZU. Effects of rising biogas bubbles on the hydrodynamic shear conditions around anaerobic granule. Chem Eng J. 2015;273:111–9.

    Article  CAS  Google Scholar 

  7. Adanikin BA, Ogunwande GA, Adesanwo OO. Evaluation and kinetics of biogas yield from morning glory (Ipomoea aquatica) co-digested with water hyacinth (Eichhornia crassipes). Ecol Eng. 2017;98:98–104.

    Article  Google Scholar 

  8. Nikolaeva S, Sánchez E, Borja R, Raposo F, Colmenarejo MF, Montalvo S, et al. Kinetics of anaerobic degradation of screened dairy manure by upflow fixed bed digesters: Effect of natural zeolite addition. J Environ Sci Health Part A. 2009;44(2):146–54.

    Article  CAS  Google Scholar 

  9. Pirsaheb M, Mohamadi S, Rahmatabadi S, Hossini H, Motteran F. Simultaneous wastewater treatment and biogas production using integrated anaerobic baffled reactor granular activated carbon from bakers yeast wastewater. Environ Technol. 2017;39(21):1–12.

  10. Abdel-Shafy HI, Mansour MSM. Biogas production as affected by heavy metals in the anaerobic digestion of sludge. Egypt J Pet. 2014;23(4):409–17.

    Article  Google Scholar 

  11. Guo Q, Majeed S, Xu R, Zhang K, Kakade A, Khan A, et al. Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: A review. J Environ Manag. 2019;240:266–72.

    Article  CAS  Google Scholar 

  12. Liu J, Luo J, Zhou J, Liu Q, Qian G, Xu ZP. Inhibitory effect of high-strength ammonia nitrogen on bio-treatment of landfill leachate using EGSB reactor under mesophilic and atmospheric conditions. Biores Technol. 2012;113:239–43.

    Article  CAS  Google Scholar 

  13. Jiang X, Hayashi J, Sun ZY, Yang L, Tang YQ, Oshibe H, et al. Improving biogas production from protein-rich distillery wastewater by decreasing ammonia inhibition. Process Biochem. 2013;48(11):1778–84.

    Article  CAS  Google Scholar 

  14. Siles JA, Brekelmans J, Martín MA, Chica AF, Martín A. Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion. Bioresour Technol. 2010;101(23):9040–8.

    Article  CAS  Google Scholar 

  15. Montalvo S, Martin JS, Huili˜nir C, Guerrero L, Borja R. Assessment of a UASB reactor with high ammonia concentrations:Effect of zeolite addition on process performance. Process Biochem. 2014;49:2220–7.

    Article  CAS  Google Scholar 

  16. Montalvo S, Guerrero L, Borja R, Travieso L, Sánchez E, Díaz F. Use of natural zeolite at different doses and dosage procedures in batch and continuous anaerobic digestion of synthetic and swine wastes. Resour Conserv Recycl. 2006;47(1):26–41.

  17. Kotsopoulos TA, Karamanlis X, Dotas D, Martzopoulos GG. The impact of different natural zeolite concentrations on the methane production in thermophilic anaerobic digestion of pig waste. Biosys Eng. 2008;99(1):105–11.

    Article  Google Scholar 

  18. Milán Z, Sánchez E, Weiland P, Borja R, Martı, x, et al. Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste. Bioresour Technol. 2001;80(1):37–43.

  19. Wijesinghe DTN, Dassanayake KB, Scales PJ, Sommer SG, Chen D. Effect of Australian zeolite on methane production and ammonium removal during anaerobic digestion of swine manure. J Environ Chem Eng. 2018;6(1):1233–41.

    Article  CAS  Google Scholar 

  20. Montalvo S, Guerrero L, Borja R, Sánchez E, Milán Z, Cortés I, et al. Application of natural zeolites in anaerobic digestion processes: A review. Appl Clay Sci. 2012;58:125–33.

    Article  CAS  Google Scholar 

  21. Fotidis IA, Wang H, Fiedel NR, Luo G, Karakashev DB, Angelidaki I. Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate. Environ Sci Technol. 2014;48(13):7669–76.

    Article  CAS  Google Scholar 

  22. Liu L, Zhang T, Wan H, Chen Y, Wang X, Yang G, et al. Anaerobic co-digestion of animal manure and wheat straw for optimized biogas production by the addition of magnetite and zeolite. Energy Convers Manag. 2015;97:132–9.

    Article  CAS  Google Scholar 

  23. Wijesinghe DTN, Dassanayake KB, Sommer SG, Scales P, Chen D. Biogas improvement by adding australian zeolite during the anaerobic digestion of C:N ratio adjusted swine manure. Waste Biomass Valoriz. 2019;10(7):1883–7.

    Article  CAS  Google Scholar 

  24. Fatima B, Liaquat R, Farooq U, Jamal A, Ali MI, Liu FJ, et al. Enhanced biogas production at mesophilic and thermophilic temperatures from a slaughterhouse waste with zeolite as ammonia adsorbent. Int J Environ Sci Technol. 2021;18(2):265–74.

    Article  CAS  Google Scholar 

  25. Wang Q, Yang Y, Yu C, Huang H, Kim M, Feng C, et al. Study on a fixed zeolite bioreactor for anaerobic digestion of ammonium-rich swine wastes. Biores Technol. 2011;102(14):7064–8.

    Article  CAS  Google Scholar 

  26. Fernández N, Montalvo S, Guerrero L, Sánchez E, Cortés I, Travieso L. Anaerobic fluidized bed reactor application to tropical fruit wine effluent. Water Sci Technol. 2007;56(2):33–8.

    Article  Google Scholar 

  27. Nordell E, Hallin S, Johansson M, Karlsson M. The diverse response on degradation rate of different substrates upon addition of zeolites. 3rd International Symposium on Energy from Biomass and Waste Venice, Italy, Nov 8–11, 2010.

  28. Zheng X, Yinguang C, Chenchen L. Waste activated sludge alkaline fermentation liquid as carbon source for biological nutrients removal in anaerobic followed by alternating aerobic-anoxic sequencing batch reactors. Chin J Chem Eng. 2010;18(3):478–85.

    Article  CAS  Google Scholar 

  29. Horiuchi Ji, Shimizu T, Kanno T, Kobayashi M. Dynamic behavior in response to pH shift during anaerobic acidogenesis with a chemostat culture. Biotechnol Tech. 1999;13(3):155–7.

    Article  Google Scholar 

  30. Wang K, Yin J, Shen D, Li N. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Bioresour Technol. 2014;161:395–401.

    Article  CAS  Google Scholar 

  31. Kuruti K, Nakkasunchi S, Begum S, Juntupally S, Arelli V, Anupoju GR. Rapid generation of volatile fatty acids (VFA) through anaerobic acidification of livestock organic waste at low hydraulic residence time (HRT). Bioresour Technol. 2017;238:188–93.

    Article  CAS  Google Scholar 

  32. Lim B-S, Kim B-C, Chung I. Anaerobic treatment of food waste leachate for biogas production using a novel digestion system. Environ Eng Res. 2012;17(1):41–6.

    Article  Google Scholar 

  33. Eslami H, Hashemi H, Fallahzadeh RA, Khosravi R, Fard RF, Ebrahimi AA. Effect of organic loading rates on biogas production and anaerobic biodegradation of composting leachate in the anaerobic series bioreactors. Ecol Eng. 2018;110:165–71.

    Article  Google Scholar 

  34. Basri MF, Yacob S, Hassan MA, Shirai Y, Wakisaka M, Zakaria MR, et al. Improved biogas production from palm oil mill effluent by a scaled-down anaerobic treatment process. World J Microbiol Biotechnol. 2010;26(3):505–14.

    Article  CAS  Google Scholar 

  35. Pahl O, Firth A, MacLeod I, Baird J. Anaerobic co-digestion of mechanically biologically treated municipal waste with primary sewage sludge–a feasibility study. Biores Technol. 2008;99(9):3354–64.

    Article  CAS  Google Scholar 

  36. Stroot PG, McMahon KD, Mackie RI, Raskin L. Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions—I. Digester performance. Water Res. 2001;35(7):1804–16.

    Article  CAS  Google Scholar 

  37. Gomez X, Cuetos MJ, Cara J, Moran A, Garcia AI. Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes: Conditions for mixing and evaluation of the organic loading rate. Renew Energy. 2006;31(12):2017–24.

    Article  CAS  Google Scholar 

  38. Murto M, Björnsson L, Mattiasson B. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. J Environ Manage. 2004;70(2):101–7.

    Article  CAS  Google Scholar 

  39. APHA (2005) Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.

  40. Begum S, Anupoju GR, Sridhar S, Bhargava SK, Jegatheesan V, Eshtiaghi N. Evaluation of single and two stage anaerobic digestion of landfill leachate: Effect of pH and initial organic loading rate on volatile fatty acid (VFA) and biogas production. Biores Technol. 2018;251:364–73.

    Article  CAS  Google Scholar 

  41. Fernández N, Fdz-Polanco F, Montalvo SJ, Toledano D. Use of activated carbon and natural zeolite as support materials, in an anaerobic fluidised bed reactor, for vinasse treatment. Water Sci Technol. 2001;44(4):1–6.

    Article  Google Scholar 

  42. Garcia-Calderon D, Buffiere P, Moletta R, Elmaleh S. Anaerobic digestion of wine distillery wastewater in down-flow fluidized bed. Water Res. 1998;32(12):3593–600.

    Article  CAS  Google Scholar 

  43. Zha X, Ma J, Tsapekos P, Lu X. Evaluation of an anaerobic baffled reactor for pretreating black water: Potential application in rural China. J Environ Manag. 2019;251:109599.

  44. Pereira EL, Campos CMM, Motteran F. Physicochemical study of pH, alkalinity and total acidity in a system composed of Anaerobic Baffled Reactor (ABR) in series with Upflow Anaerobic Sludge Blanket reactor (UASB) in the treatment of pig farming wastewater. Acta Sci Technol. 2013;35(3):477–83.

    Article  Google Scholar 

  45. Appels L, Baeyens J, Degreve J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci. 2008;34(6):755–81.

    Article  CAS  Google Scholar 

  46. Lee DH, Behera SK, Kim JW, Park H-S. Methane production potential of leachate generated from Korean food waste recycling facilities: A lab-scale study. Waste Manag. 2009;29(2):876–82.

    Article  CAS  Google Scholar 

  47. Ağdağ ON, Sponza DT. Effect of alkalinity on the performance of a simulated landfill bioreactor digesting organic solid wastes. Chemosphere. 2005;59(6):871–9.

    Article  Google Scholar 

  48. Tada C, Yang Y, Hanaoka T, Sonoda A, Ooi K, Sawayama S. Effect of natural zeolite on methane production for anaerobic digestion of ammonium rich organic sludge. Bioresour Technol. 2005;96(4):459–64.

    Article  CAS  Google Scholar 

  49. Altaş L. Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. J Hazard Mater. 2009;162(2–3):1551–6.

    Article  Google Scholar 

  50. Tian Y, Zhang H, Chai Y, Wang L, Mi X, Zhang L, et al. Biogas properties and enzymatic analysis during anaerobic fermentation of Phragmites australis straw and cow dung: influence of nickel chloride supplement. Biodegradation. 2017;28(1):15–25.

    Article  CAS  Google Scholar 

  51. Tian Y, Zhang H. Producing biogas from agricultural residues generated during phytoremediation process: Possibility, threshold, and challenges. Int J Green Energy. 2016;13(15):1556–63.

    Article  Google Scholar 

  52. Jiang X, Wang C. Zinc distribution and zinc-binding forms in Phragmites australis under zinc pollution. J Plant Physiol. 2008;165(7):697–704.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Research Council of Kermanshah University of Medical Sciences (Grant Number: 95326) for the financial support. This work was performed in partial fulfillment of the requirement for M.Sc. of Environmental Health Engineering of (Jila Amini), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jila Amini.

Ethics declarations

Conflict of interest

This work does not have any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirsaheb, M., Hossaini, H. & Amini, J. Operational parameters influenced on biogas production in zeolite/anaerobic baffled reactor for compost leachate treatment. J Environ Health Sci Engineer 19, 1743–1751 (2021). https://doi.org/10.1007/s40201-021-00729-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00729-3

Keywords

Navigation