Skip to main content

Advertisement

Log in

DFT Study of Lead-Free Mixed-Halide Materials Cs2X2Y2 (X, Y = F, Cl, Br, I) for Optoelectronic Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The intrinsic problems of toxicity and instability of lead solar cells have motivated extensive research intended to develop alternative materials for photovoltaic applications. First-principles calculations were performed in order to shed light on replacing the Pb2+ cation in lead- and mixed-halide materials with a formula of Cs2X2Y2 (X, Y = F, Cl, Br, I). The calculated band gaps range from 0 eV to 3.188 eV, and the absorption coefficients from 6 to 16 × 104 cm−1. The band gap of Cs2Cl2I2 is close to the Shockley-Queisser limit and its absorption coefficient is in the visible frequency range, which, in conjunction with its easy and economical synthesis process, qualify it as an alternative lead-free material for fabricating solar cells. It is suggested for further work that if the ratio of halogens is adjusted then the band gaps of Cs2F2Cl2, Cs2Cl2I2, Cs2Br2I2, and Cs2I2F2 may be tuned to the desired electronic band gap limit required to improve their optoelectronic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Chu, and A. Majumdar, Nature 488, 294 (2012).

    Article  CAS  Google Scholar 

  2. T.M. AkihiroKojima, K. Teshima, Y. Shirai, A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).

    Article  CAS  Google Scholar 

  3. J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, and N.G. Park, Nanoscale 3, 4088 (2011).

    Article  CAS  Google Scholar 

  4. J.A. Chang, S.H. Im, Y.H. Lee, H. Kim, C. Lim, J.H. Heo, and S.I. Seok, Nano Lett. 12, 1863 (2012).

    Article  CAS  Google Scholar 

  5. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Science 338, 643 (2012).

    Article  CAS  Google Scholar 

  6. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok, Nature 13, 1764 (2013).

    CAS  Google Scholar 

  7. N.R.E.L. (NREL), http://www.Nrel.Gov/Ncpv/Images/Efficiency_Chart.Jpg (2016).

  8. E. Union, Off. J. Eur. Communities L 269, 1 (2004).

    Google Scholar 

  9. A. Abate, Joule 1, 659 (2017).

    Article  CAS  Google Scholar 

  10. V. Andrei, R.L.Z. Hoye, M. Crespo-Quesada, M. Bajada, S. Ahmad, M. De Volder, R. Friend, and E. Reisner, Adv. Energy Mater. 8 (2018).

  11. T. Cai, W. Shi, S. Hwang, K. Kobbekaduwa, Y. Nagaoka, H. Yang, K. Hills-Kimball, H. Zhu, J. Wang, Z. Wang, Y. Liu, D. Su, J. Gao, and O. Chen, J. Am. Chem. Soc. 142, 11927 (2020).

    Article  CAS  Google Scholar 

  12. B.W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, and E.M.J. Johansson, Adv. Mater. 27, 6806 (2015).

    Article  CAS  Google Scholar 

  13. H.F. Zarick, N. Soetan, W.R. Erwin, and R. Bardhan, J. Mater. Chem. A 6, 5507 (2018).

    Article  CAS  Google Scholar 

  14. W. Ning, and F. Gao, Adv. Mater. 31, 1 (2019).

    Google Scholar 

  15. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith, Energy Environ. Sci. 7, 982 (2014).

    Article  CAS  Google Scholar 

  16. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013).

    Article  CAS  Google Scholar 

  17. O. Malinkiewicz, A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel, M.K. Nazeeruddin, and H.J. Bolink, Nat. Photonics 8, 128 (2014).

    Article  CAS  Google Scholar 

  18. M.A. Green, A. Ho-Baillie, and H.J. Snaith, Nat. Photonics 8, 506 (2014).

    Article  CAS  Google Scholar 

  19. J.M. Ball, M.M. Lee, A. Hey, and H.J. Snaith, Energy Environ. Sci. 6, 1739 (2013).

    Article  CAS  Google Scholar 

  20. J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.S. Lim, J.A. Chang, Y.H. Lee, H.J. Kim, A. Sarkar, M.K. Nazeeruddin, M. Grätzel, and S.I. Seok, Nat. Photonics 7, 486 (2013).

    Article  CAS  Google Scholar 

  21. D. Liu, and T.L. Kelly, Nat. Photonics 8, 133 (2014).

    Article  CAS  Google Scholar 

  22. H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542 (2014).

    Article  CAS  Google Scholar 

  23. J.H. Im, I.H. Jang, N. Pellet, M. Grätzel, and N.G. Park, Nat. Nanotechnol. 9, 927 (2014).

    Article  CAS  Google Scholar 

  24. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.B. Cheng, and L. Spiccia, Angew. Chemie Int. Ed. 53, 9898 (2014).

    Article  CAS  Google Scholar 

  25. G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T.C. Sum, Nat. Mater. 13, 476 (2014).

    Article  CAS  Google Scholar 

  26. F. Deschler, M. Price, S. Pathak, L.E. Klintberg, D.D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S.D. Stranks, H.J. Snaith, M. Atatüre, R.T. Phillips, and R.H. Friend, J. Phys. Chem. Lett. 5, 1421 (2014).

    Article  CAS  Google Scholar 

  27. X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E.H. Sargent, Nat. Photonics 10, 253 (2016).

    Article  CAS  Google Scholar 

  28. O.A. Jaramillo-Quintero, R.S. Sanchez, M. Rincon, and I. Mora-Sero, J. Phys. Chem. Lett. 6, 1883 (2015).

    Article  CAS  Google Scholar 

  29. A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P.M. Pearce, F. Deschler, R.L.Z. Hoye, K.C. Gödel, T. Bein, P. Docampo, S.E. Dutton, M.F.L. De Volder, and R.H. Friend, Nano Lett. 15, 6095 (2015).

    Article  CAS  Google Scholar 

  30. Z.K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L.M. Pazos, D. Credgington, F. Hanusch, T. Bein, H.J. Snaith, and R.H. Friend, Nat. Nanotechnol. 9, 687 (2014).

    Article  CAS  Google Scholar 

  31. D. Yang, R. Yang, J. Zhang, Z. Yang, S. Liu, and C. Li, Energy Environ. Sci. 8, 3208 (2015).

    Article  CAS  Google Scholar 

  32. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis, and R. Mosca, Chem. Mater. 25, 4613 (2013).

    Article  CAS  Google Scholar 

  33. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Science 342, 341 (2013).

    Article  CAS  Google Scholar 

  34. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, Science 348, 1234 (2015).

    Article  CAS  Google Scholar 

  35. H.S. Kim, S.H. Im, and N.G. Park, J. Phys. Chem. C 118, 5615 (2014).

    Article  CAS  Google Scholar 

  36. Y. Rong, L. Liu, A. Mei, X. Li, and H. Han, Adv. Energy Mater. 5, 1 (2015).

    Article  CAS  Google Scholar 

  37. Y. Zhao, and K. Zhu, Chem. Soc. Rev. 45, 655 (2016).

    Article  CAS  Google Scholar 

  38. T. Drews, R. Marx, and K. Seppelt, Chem. A Eur. J. 2, 1303 (1996).

    Article  CAS  Google Scholar 

  39. A. Jain, O. Voznyy, and E.H. Sargent, J. Phys. Chem. C 121, 7183 (2017).

    Article  CAS  Google Scholar 

  40. E. Donnelly and L. La Spada, Eng. Res. Express 2 (2020).

  41. N.M. Estakhri, B. Edwards, and N. Engheta, Science 363, 1333 (2019).

    Article  CAS  Google Scholar 

  42. L.U.L.A.S. Pada, and L.U.V. Egni, Near-zero-index wires 25, 149 (2017).

    Google Scholar 

  43. N.J. Greybush, V. Pacheco-Penã, N. Engheta, C.B. Murray, and C.R. Kagan, ACS Nano 13, 1617 (2019).

    Article  CAS  Google Scholar 

  44. L. La Spada, C. Spooner, S. Haq, and Y. Hao, Sci. Rep. 9, 1 (2019).

    Article  CAS  Google Scholar 

  45. I.H. Lee, D. Yoo, P. Avouris, T. Low, and S.H. Oh, Nat. Nanotechnol. 14, 313 (2019).

    Article  CAS  Google Scholar 

  46. Z. Lalegani, S.A.S. Ebrahimi, B. Hamawandi, L. La Spada, and M.S. Toprak, Opt. Mater. (Amst.) 108, 110381 (2020).

    Article  CAS  Google Scholar 

  47. L. LaSpada, Sensors (Switzerland) 19, 355 (2019).

    Article  CAS  Google Scholar 

  48. L. Vegni, R. Cicchetti, and P. Capece, IEEE Trans. Antennas Propag. 36, 1057 (1988).

    Article  Google Scholar 

  49. F. Qin, L. Ding, L. Zhang, F. Monticone, C.C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.W. Qiu, Sci. Adv. 2, 1 (2016).

    Article  Google Scholar 

  50. T.M. McManus, L. La Spada, and Y. Hao, J. Opt. (United Kingdom) 18, 044005 (2016).

    Google Scholar 

  51. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne, Zeitschrift Fur Krist. 220, 567 (2005).

    CAS  Google Scholar 

  52. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  53. B.M.D.S. BIOVIA Support, Biovia Materials Studio 8.0 Sp1. 0–7 (2015).

  54. U.G. Jong, C.J. Yu, Y.M. Jang, G.C. Ri, S.N. Hong, and Y.H. Pae, J. Power Sources 350, 65 (2017).

    Article  CAS  Google Scholar 

  55. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  56. K. Bazaka, and M.V. Jacob, Nanomaterials 7, 11 (2017).

    Article  CAS  Google Scholar 

  57. W. Shockley, and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  CAS  Google Scholar 

  58. S. Rühle, Sol. Energy 130, 139 (2016).

    Article  Google Scholar 

  59. A.H. Slavney, T. Hu, A.M. Lindenberg, and H.I. Karunadasa, J. Am. Chem. Soc. 138, 2138 (2016).

    Article  CAS  Google Scholar 

  60. E.T. McClure, M.R. Ball, W. Windl, and P.M. Woodward, Chem. Mater. 28, 1348 (2016).

    Article  CAS  Google Scholar 

  61. G. Volonakis, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, H.J. Snaith, and F. Giustino, J. Phys. Chem. Lett. 7, 1254–1259 (2016).

    Article  CAS  Google Scholar 

  62. M.R. Filip, S. Hillman, A.A. Haghighirad, H.J. Snaith, and F. Giustino, J. Phys. Chem. Lett. 7, 2579 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author (A. Dahshan) gratefully thanks the deanship of science research at King Khalid University for the financial support through research group program Under Grant Number (R.G.P2/113/41)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Jalil.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 776 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H., Ilyas, S.Z., Jalil, A. et al. DFT Study of Lead-Free Mixed-Halide Materials Cs2X2Y2 (X, Y = F, Cl, Br, I) for Optoelectronic Applications. J. Electron. Mater. 50, 5647–5655 (2021). https://doi.org/10.1007/s11664-021-09083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09083-4

Keywords

Navigation