Skip to main content
Log in

Effects of Ag Flake Addition in Sn-3.0Ag-0.5Cu on Microstructure and Mechanical Properties with High-Temperature Storage Test

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the 3D integrated circuit package industry, the remelting of solder joints during repeated stacking processes can cause electrical failure and low bonding strength. Transient liquid phase sintering (TLPS) bonding based on forming full intermetallic compounds (IMCs) in the solder joint to increase the remelting point has emerged as a potential solution to this issue. Here, pressureless TLPS Cu-Cu bonding was conducted with Sn-3.0Ag-0.5Cu solder powders and various Ag flake powder content (15 wt.%, 30 wt.%, 45 wt.%, and 60 wt.%). The TLPS paste was screen-printed and the bonding process was conducted at 255°C for 2 h in an air atmosphere without bonding pressure. Additionally, this study investigated the microstructural evolution and fracture modes of the TLPS joints after the shear tests were investigated. High-temperature storage tests were conducted at 300°C for 24 h, 48 h, and 96 h, and a shear test was then performed to evaluate bonding strength. A differential scanning calorimetry analysis of the TLPS paste was conducted to investigate the thermal behavior of the paste during the bonding process. No residual solder was found in TLPS joints with an Ag flake content above 45 wt.% The highest bonding strength in a TLPS joint with full IMC layers was 27.3 MPa, representing an approximately 9% decrease after 96 h of high-temperature storage test. TLPS bonding with an optimal composition was resistant to the remelting of solder joints due to the full IMC layers, i.e., it represents a reliable interconnection method for 3D stacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Liu, N. Tamura, D.W. Kim, S. Gu, and K.N. Tu, Scr. Mater. 102, 39 (2015).

    Article  CAS  Google Scholar 

  2. H.C. Cheng, R.Y. Hong, H.C. Hu, and W.H. Chen, IEEE Trans. Device. Mater. Reliab. 18, 18 (2017).

    Article  Google Scholar 

  3. W.Y. Chen, R.W. Song, and J.G. Duh, Intermetallics 85, 170 (2017).

    Article  CAS  Google Scholar 

  4. L. Zhang, Z.Q. Liu, S.W. Chen, Y.D. Wang, W.M. Long, Y.H. Guo, S.Q. Wang, G. Ye, and W.Y. Liu, J. Alloys Compd. 750, 980 (2018).

    Article  CAS  Google Scholar 

  5. Y. Tian, H. Fang, N. Ren, Y. Zhao, B. Chen, F. Wu, and K.W. Paik, J. Alloys Compd. 828, 154468 (2020).

  6. R. Xu, Y. Liu, H. Zhang, Z. Li, F. Sun, and G. Zhang, J. Electron. Mater. 48, 1758 (2019).

    Article  CAS  Google Scholar 

  7. M. Wang, C. Qiao, X. Jiang, L. Hao, and X. Liu, J. Mater. Sci. Technol. 51, 40 (2020).

    Article  Google Scholar 

  8. K.S.J. Siow, Electron Mater. 43, 947–961 (2014).

    CAS  Google Scholar 

  9. C. Chen, S. Nagao, H. Zhang, J. Jiu, T. Sugahara, K. Suganuma, T. Iwashige, K. Sugiura, and K. Tsuruta, J. Electron. Mater. 46(3), 1576-1586. (2017).

  10. Y. Peng, Y. Mou, J. Liu, and M. Chen, J. Mater. Sci. Mater. Electron. 31, 8456–8463 (2020).

    Article  CAS  Google Scholar 

  11. H. Ji, J. Zhou, M. Liang, H. Lu, and M. Li, Ultrason Sonochem. 41, 375–381 (2018).

    Article  CAS  Google Scholar 

  12. G. Ferk, J. Stergar, M. Drofenik, D. Makovec, A. Hamler, Z. Jagličić, and I. Ban, Mater. Lett. 124, 39–42 (2014).

    Article  CAS  Google Scholar 

  13. Y. Gao, W. Li, C. Chen, H. Zhang, J. Jiu, C.F. Li, S. Nagao, and K. Suganuma, Mater. Des. 160, 1265–1272 (2018).

    Article  CAS  Google Scholar 

  14. C. Chen, and K. Suganuma, Mater. Des. 162, 311–321 (2019).

    Article  CAS  Google Scholar 

  15. H. Zhang, W. Wang, H. Bai, G. Zou, L. Liu, P. Peng, and W. Guo, J. Alloys Compd. 774, 487–494 (2019).

    Article  CAS  Google Scholar 

  16. R. Riva, C. Buttay, B. Allard, and P. Bevilacqua, Microelectron Reliab. 53(9–11), 1592-1596. (2013).

  17. L. Bernstein, J. Electrochem. Soc. 113, 1282 (1966).

    Article  CAS  Google Scholar 

  18. J.F. Li, P.A. Agyakwa, and C.M. Johnson, Acta Mater. 59, 1198 (2011).

    Article  CAS  Google Scholar 

  19. T.A. Tollefsen, A. Larsson, O.M. Løvvik, and K.E. Aasmundtveit, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 904 (2013).

    Article  CAS  Google Scholar 

  20. B.U. Hwang, K.D. Min, C.J. Lee, J.H. Kim, and S.B. Jung, Materialia 12, 100808 (2020).

  21. B.S. Lee, S.K. Hyun, and J.W. Yoon, J. Mater. Sci. Mater. Electron. 28, 7827 (2017).

    Article  CAS  Google Scholar 

  22. J.W. Yoon, Y.S. Kim, and S.E. Jeong, J. Mater. Sci. Mater. Electron. 30, 20205 (2019).

    Article  CAS  Google Scholar 

  23. M.K. Faiz, K. Bansho, T. Suga, T. Miyashita, and M. Yoshida, J. Mater. Sci. Mater. Electron. 28, 16433 (2017).

    Article  Google Scholar 

  24. H. Feng, J. Huang, X. Peng, Z. Lv, Y. Wang, J. Yang, S. Chen, and X. Zhao, J. Electron. Mater. 47, 4642 (2018).

    Article  CAS  Google Scholar 

  25. K.D. Min, K.H. Jung, C.J. Lee, H. Jeong, and S.B. Jung, J. Mater. Sci. Mater. Electron. 30, 18848 (2019).

    Article  CAS  Google Scholar 

  26. M. Fujino, H. Narusawa, Y. Kuramochi, E. Higurashi, T. Suga, T. Shiratori, and M. Mizukoshi, Jpn. J. Appl. Phys. 55, 04EC14 (2016).

  27. H. Feng, J. Huang, J. Yang, S. Zhou, R. Zhang, and S. Chen, J. Electron. Mater. 46, 4152 (2017).

    Article  CAS  Google Scholar 

  28. K.H. Jung, K.D. Min, C.J. Lee, and S.B. Jung, J. Alloys Compd. 781, 657 (2019).

    Article  CAS  Google Scholar 

  29. B.G. Park, K.H. Jung, and S.B. Jung, J. Alloys Compd. 699, 1186 (2017).

    Article  CAS  Google Scholar 

  30. X. Hu, T. Xu, L.M. Keer, Y. Li, and X. Jiang, Mat. Sci. Eng. A 673, 167 (2016).

    Article  CAS  Google Scholar 

  31. H.Y. Chuang, T.L. Yang, M.S. Kuo, Y.J. Chen, J.J. Yu, C.C. Li, and C.R. Kao, IEEE Trans. Device. Mater. Reliab. 12, 233 (2012).

    Article  CAS  Google Scholar 

  32. C.C. Li, C.K. Chung, W.L. Shih, and C.R. Kao, Metall. Mater. Trans. A 45, 2343 (2014).

    Article  CAS  Google Scholar 

  33. F.Y. Ouyang, and Y.P. Su, J. Alloys Compd. 655, 155 (2016).

    Article  CAS  Google Scholar 

  34. H.T. Lee, M.H. Chen, H.M. Jao, and T.L. Liao, Mat. Sci. Eng. A 358, 134 (2003).

    Article  Google Scholar 

  35. C.C. Chang, Y.W. Lin, Y.W. Wang, and C.R. Kao, J. Alloys Compd. 492, 99 (2010).

    Article  CAS  Google Scholar 

  36. Ž Marinković, and V. Simić, Thin Solid Films 195, 127 (1991).

    Article  Google Scholar 

  37. K. Suzuki, S. Kano, M. Kajihara, N. Kurokawa, and K. Sakamoto, Mater. Trans. 46, 969 (2005).

    Article  CAS  Google Scholar 

  38. M. Oh, M. C. Oh, D. Han, S. H. Jung, and B. Ahn, Metals. 8(2), 121. (2018).

Download references

Acknowledgment

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2019R1A6A1A03033215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Boo Jung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, JH., Min, K.D., Lee, CJ. et al. Effects of Ag Flake Addition in Sn-3.0Ag-0.5Cu on Microstructure and Mechanical Properties with High-Temperature Storage Test. J. Electron. Mater. 50, 5639–5646 (2021). https://doi.org/10.1007/s11664-021-09102-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09102-4

Keywords

Navigation