Skip to main content
Log in

Preparation of a Large-Grained Cu2ZnSnS4 Thin-Film Absorbent Layer by Two-Cycle Deposition Sulfurization

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study proposes a new optimized preparation method for Cu2ZnSnS4 (CZTS) absorbent film. The aim is to overcome the problems faced when the conventional sol–gel method is used, which includes a smaller grain size and a small nanoparticle layer present at the bottom of the film. Our absorbent layer preparation process is divided into two cycles. In the first cycle, a low-thickness precursor film is spin-coated on molybdenum-coated soda-lime glass (SLG) and then sulfurized once. In the second cycle, the sample obtained in the first cycle is used as the substrate for spin coating, so as to obtain a second low-thickness precursor film. This is then followed by the second sulfurization process, which achieves the final absorbent layer film. Surface and cross-sectional images from the scanning electron microscope (SEM) show that the prepared absorbent layer of the film has a dense surface and CZTS large grains penetrate it in its entirety, which effectively reduces the bottom fragmented grains. It is found that under the same experimental conditions, our method increases the PCE from the traditional method’s 1.66% to 3.60%. This thereby demonstrates the feasibility of the present method to improve the quality of the absorbent layer, which in turn has a certain significance for the further improvement of the efficiency of CZTS thin-film solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, Nat. Energy 2, 17032 (2017).

    Article  CAS  Google Scholar 

  2. T.D. Lee, and A.U. Ebong, Renew. Sustain. Energy Rev. 70, 1286 (2017).

    Article  CAS  Google Scholar 

  3. M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, and A.W.Y. Ho-Baillie, Prog. Photovolt. 25, 668 (2017).

    Article  Google Scholar 

  4. E.S. Hossain, P. Chelvanathan, S.A. Shahahmadi, K. Sopian, B. Bais, and N. Amin, Curr. Appl. Phys. 18, 79 (2018).

    Article  Google Scholar 

  5. P.S. Tamboli, M.B.R. Prasad, V.S. Kadam, R.S. Vhatkar, H. Inamuddin, H.M. Pathan, and S.S. Mahajan, Solar Energy Mater. Solar Cells 161, 96 (2017).

    Article  CAS  Google Scholar 

  6. Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J.M. Pringle, U. Bach, L. Spiccia, and Y.B. Cheng, J. Mater. Chem. A 3, 8139 (2015).

    Article  CAS  Google Scholar 

  7. K. Patel, D.V. Shah, and V. Kheraj, J. Alloys Compd. 622, 942 (2015).

    Article  CAS  Google Scholar 

  8. N. Muhunthan, O. P. Singh, and V. N. Singh, in Proceedings of SPIE J. Friend and H. H. Tan, eds., 2013.

  9. W. Ki, and H.W. Hillhouse, Adv. Energy Mater. 1, 732 (2011).

    Article  CAS  Google Scholar 

  10. D.H. Son, S.H. Kim, S.Y. Kim, Y.I. Kim, J.H. Sim, S.N. Park, D.H. Jeon, D.K. Hwang, S.J. Sung, J.K. Kang, K.J. Yang, and D.H. Kim, J. Mater. Chem. A 7, 25279 (2019).

    Article  CAS  Google Scholar 

  11. W. Li, L.B. Zhao, K.L. Zhang, H. Sun, Y.Q. Lai, Y. Jiang, L.X. Jiang, F.Y. Liu, and M. Jia, J. Alloys Compd. 701, 55 (2017).

    Article  CAS  Google Scholar 

  12. E. Garcia-Llamas, J.M. Merino, R. Gunder, K. Neldner, D. Greiner, A. Steigert, S. Giraldo, V. Izquierdo-Roca, E. Saucedo, M. Leon, S. Schorr, and R. Caballero, Sol. Energy 141, 236 (2017).

    Article  CAS  Google Scholar 

  13. W.P. Dang, X.D. Ren, W. Zi, L.J. Jia, and S.Z. Liu, J. Alloys Compd. 650, 1 (2015).

    Article  CAS  Google Scholar 

  14. N. Jahan, H. Kabir, H. Taha, M.K. Hossain, M.M. Rahman, M.S. Bashar, A. Amri, M.A. Hossain, and F. Ahmed, J. Alloys Compd. 859, 5 (2021).

    Article  CAS  Google Scholar 

  15. M.P. Suryawanshi, G.L. Agawane, S.M. Bhosale, S.W. Shin, P.S. Patil, J.H. Kim, and A.V. Moholkar, Mater. Technol. 28, 98 (2013).

    Article  CAS  Google Scholar 

  16. K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, Solar Energy Mater Solar Cells 93, 583 (2009).

    Article  CAS  Google Scholar 

  17. Y.B.K. Kumar, G.S. Babu, P.U. Bhaskar, and V.S. Raja, Solar Energy Mater Solar Cells 93, 1230 (2009).

    CAS  Google Scholar 

  18. A.Y. Tang, Z.L. Li, F. Wang, M.L. Dou, Y.Y. Pan, and J.Y. Guan, Appl. Surf. Sci. 402, 70 (2017).

    Article  CAS  Google Scholar 

  19. K. Tanaka, N. Moritake, and H. Uchiki, Solar Energy Mater Solar Cells 91, 1199 (2007).

    Article  CAS  Google Scholar 

  20. C. Yan, J.L. Huang, K.W. Sun, S. Johnston, Y.F. Zhang, H. Sun, A.B. Pu, M.R. He, F.Y. Liu, K. Eder, L.M. Yang, J.M. Cairney, N.J. Ekins-Daukes, Z. Hameiri, J.A. Stride, S.Y. Chen, M.A. Green, and X.J. Hao, Nat. Energy 3, 764 (2018).

    Article  CAS  Google Scholar 

  21. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, and Q.Q. Qiao, Energy Environ. Sci. 8, 3134 (2015).

    Article  CAS  Google Scholar 

  22. Y.W. Wei, D.M. Zhuang, M. Zhao, Q.M. Gong, R.J. Sun, G.A. Ren, Y.X. Wu, L. Zhang, X.Y. Lyu, X. Peng, and J.Q. Wei, J. Alloys Compd. 773, 689 (2019).

    Article  CAS  Google Scholar 

  23. Z. Wang, J.H. Tao, W.Z. Xiao, T.S. Xu, X.W. Zhang, D. Hu, and Z.M. Ma, J. Alloys Compd. 701, 465 (2017).

    Article  CAS  Google Scholar 

  24. X.S. Lu, B. Xu, C.H. Ma, Y. Chen, P.X. Yang, J.H. Chu, and L. Sun, Sol. Energy 196, 597 (2020).

    Article  CAS  Google Scholar 

  25. M. Johnson, S.V. Baryshev, E. Thimsen, M. Manno, X. Zhang, I.V. Veryovkin, C. Leighton, and E.S. Aydil, Energy Environ. Sci. 7, 1931 (2014).

    Article  CAS  Google Scholar 

  26. B. Liu, J. Guo, R.T. Hao, L. Wang, K. Gu, S.H. Sun, and A. Aierken, Sol. Energy 201, 219 (2020).

    Article  CAS  Google Scholar 

  27. K. Gu, R.T. Hao, J. Guo, A. Aierken, X.X. Liu, F.R. Chang, Y. Li, G.S. Wei, B. Liu, L. Wang, S.H. Sun, and X.L. Ma, J. Mater. Sci. Mater. Electron. 30, 20443 (2019).

    Article  CAS  Google Scholar 

  28. T. Fukano, S. Tajima, and T. Ito, Appl. Phys. Express 6, 66 (2013).

    Article  CAS  Google Scholar 

  29. X.M. Li, R.T. Hao, K. Gu, J. Guo, J.H. Mo, S.L. Fang, X.X. Liu, Y. Li, G.S. Wei, B. Liu, L. Wang, S.H. Sun, H.M. Liu, and X.L. Ma, Mater. Sci. Semicond. Process. 123, 66 (2021).

    Google Scholar 

  30. S. Kahraman, S. Cetinkaya, M. Podlogar, S. Bernik, H.A. Cetinkara, and H.S. Guder, Ceram. Int. 39, 9285 (2013).

    Article  CAS  Google Scholar 

  31. B. Shin, Y. Zhu, N.A. Bojarczuk, S.J. Chey, and S. Guha, Appl. Phys. Lett. 101, 66 (2012).

    Article  CAS  Google Scholar 

  32. F. Liu, S. Shen, F. Zhou, N. Song, X. Wen, J.A. Stride, K. Sun, C. Yan, and X. Hao, J. Mater. Chem. C 3, 10783 (2015).

    Article  CAS  Google Scholar 

  33. A. Redinger, D.M. Berg, P.J. Dale, and S. Siebentritt, J. Am. Chem. Soc. 133, 3320 (2011).

    Article  CAS  Google Scholar 

  34. H. Zhou, W.-C. Hsu, H.-S. Duan, B. Bob, W. Yang, T.-B. Song, C.-J. Hsu, and Y. Yang, Energy Environ. Sci. 6, 2822 (2013).

    Article  CAS  Google Scholar 

  35. Y. Cao, M.S. Denny Jr., J.V. Caspar, W.E. Farneth, Q. Guo, A.S. Ionkin, L.K. Johnson, M. Lu, I. Malajovich, D. Radu, H.D. Rosenfeld, K.R. Choudhury, and W. Wu, J. Am. Chem. Soc. 134, 15644 (2012).

    Article  CAS  Google Scholar 

  36. S.Y. Chen, L.W. Wang, A. Walsh, X.G. Gong, and S.H. Wei, Appl. Phys. Lett. 101, 66 (2012).

    Google Scholar 

  37. S.Y. Chen, A. Walsh, X.G. Gong, and S.H. Wei, Adv. Mater. 25, 1522 (2013).

    Article  CAS  Google Scholar 

  38. C. Platzer-Bjorkman, J. Scragg, H. Flammersberger, T. Kubart, and M. Edoff, Solar Energy Mater Solar Cells 98, 110 (2012).

    Article  CAS  Google Scholar 

  39. S.C. Riha, B.A. Parkinson, and A.L. Prieto, J. Am. Chem. Soc. 131, 12054 (2009).

    Article  CAS  Google Scholar 

  40. J. He, L. Sun, Y. Chen, J. Jiang, P. Yang, and J. Chu, J. Power Sources 273, 600 (2015).

    Article  CAS  Google Scholar 

  41. Z.F. Wei, M.J. Newman, W.C. Tsoi, and T.M. Watson, Appl. Phys. Lett. 109, 66 (2016).

    Google Scholar 

  42. G. Gurieva, M. Guc, L. I. Bruk, V. Izquierdo-Roca, A. Perez Rodriguez, S. Schorr, and E. Arushanov, Phys. Status Solidi C Curr. Top. Solid State Phys. 10(7–8), 1082 2013.

  43. J.H. Lin, J.X. Xu, and Y.Z. Yang, Superlatt. Microstruct. 147, 66 (2020).

    Article  CAS  Google Scholar 

  44. B. Ananthoju, J. Mohapatra, D. Bahadur, N.V. Medhekar, and M. Aslam, Solar Energy Mater Solar Cells 189, 125 (2019).

    Article  CAS  Google Scholar 

  45. M.A. Olgar, M. Tomakin, T. Kucukomeroglu, and E. Bacaksiz, Mater. Res. Express 6, 66 (2019).

    Article  CAS  Google Scholar 

  46. M. Yang, X. Ma, Z. Jiang, Z. Li, S. Liu, Y. Lu, and S. Wang, Phys. B Condens. Matter 509, 50 (2017).

    Article  CAS  Google Scholar 

  47. O. Stroyuk, A. Raevskaya, O. Selyshchev, V. Dzhagan, N. Gaponik, D.R.T. Zahn, and A. Eychmueller, Sci. Rep. 8, 12 (2018).

    Article  CAS  Google Scholar 

  48. M. Vishwakarma, K. Agrawal, J. Hadermann, and B.R. Mehta, Appl. Surf. Sci. 507, 30 (2020).

    Article  CAS  Google Scholar 

  49. M. Hurtado, S. D. Cruz, R. A. Becerra, C. Calderon, P. Bartolo-Perez, and G. Gordillo, IEEE, XPS Analysis and Structural Characterization of CZTS Thin Films Prepared Using Solution and Vacuum Based Deposition Techniques, 2014.

  50. H. Kirou, L. Atourki, L. Essaleh, A. Taleb, M.Y. Messous, K. Bouabid, M. Nya, and A. Ihlal, J. Alloys Compd. 783, 524 (2019).

    Article  CAS  Google Scholar 

  51. S.H. Hadke, S. Levcenko, S. Lie, C.J. Hages, J.A. Marquez, T. Unold, and L.H. Wong, Adv. Energy Mater. 8, 66 (2018).

    Article  CAS  Google Scholar 

  52. G. Brammertz, M. Buffiere, S. Oueslati, H. ElAnzeery, K. Ben Messaoud, S. Sahayaraj, C. Koble, M. Meuris, and J. Poortmans, Appl. Phys. Lett. 103, 66 (2013).

    Article  CAS  Google Scholar 

  53. H. Nazem, H.P. Dizaj, and N.E. Gorji, Superlatt. Microstruct. 128, 421 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 61774130), and the Ph.D. Programs Foundation of China’s Ministry of Education (No. 20105303120002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiting Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Hao, R., Guo, J. et al. Preparation of a Large-Grained Cu2ZnSnS4 Thin-Film Absorbent Layer by Two-Cycle Deposition Sulfurization. J. Electron. Mater. 50, 5590–5598 (2021). https://doi.org/10.1007/s11664-021-09135-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09135-9

Keywords

Navigation