Skip to main content
Log in

Research on Microstructure and Shear Behavior of Au/Sn-Ag-Cu/Cu Lead-free Solder Joints at Different Soldering Temperatures

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the actual production process, soldering is a key step in the flip-chip packaging process. The reliability of the interconnection interface of flip-chip LED chips is considered to be one of the most important reliability issues. This paper studies the influence of different soldering temperatures on the microstructure and shear behavior of the Au/Sn-3.0Ag-0.5Cu/Cu solder joints of flip-chip LED chips. The lead-free solder Sn-3.0Ag-0.5Cu was selected as the solder. The microstructure of the intermetallic compound (IMC) interface and the inferred surface of the solder joint is observed, and the microstructure evolution of the solder joint is analyzed. The void ratio of the solder joints at 250°C, 260°C, 270°C, 280°C, and 290°C soldering temperature was tested to characterize the influence of the contact area between the chip and the solder joint on the shear stress. In addition, the solder joints were aged for 1000 hours in an environment with a relative humidity of 85°C/85%, and a shear test was performed to evaluate the influence of the interface reaction on the mechanical reliability of the solder joints during the isothermal aging process. The research show that when the soldering temperature is 270°C, the Au on the bottom of the chip, and the solder and Cu on the substrate have fully reacted, and the solder joints have high shear resistance. The shear strength of the aging solder joints increases first and then decreases, because the high temperature repairs the defects in the solder layer caused by the low soldering temperature to a certain extent. With the extension of aging, cracks and voids gradually appear at the fracture interface, and the effective contact area decreases. The shear strength of the solder joint decreases, and the fracture mode becomes brittle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J.H. Lee, and Y.B. Park, J. Electron. Mater. 38, 2194 (2009).

    Article  CAS  Google Scholar 

  2. M. Roma, S. Kudtarkar, O. Kierse, D. Sengupta, and J. Cho, J. Electron. Mater. 47, 1 (2018).

    Article  CAS  Google Scholar 

  3. L.K. Teh, C.C. Wong, S. Mhaisalkar, K. Ong, P.S. Teo, and E.H. Wong, J. Electron. Mater. 33, 271 (2004).

    Article  CAS  Google Scholar 

  4. C.M. Tsai, W.C. Luo, C.W. Chang, Y.C. Shieh, and C.R. Kao, J. Electron. Mater. 33, 1424 (2004).

    Article  CAS  Google Scholar 

  5. J.W. Kim, and S.B. Jung, J. Electron. Mater. 36, 690 (2007).

    Article  CAS  Google Scholar 

  6. Z. Huang, P.P. Conway, C. Liu, and R.C. Thomson, J. Electron. Mater. 33, 1227 (2004).

    Article  CAS  Google Scholar 

  7. W.H. Zhong, Y.C. Chan, M.O. Alam, B.Y. Wu, and J.F. Guan, J. Alloy Compd. 414, 123 (2006).

    Article  CAS  Google Scholar 

  8. Y. Kariya, T. Hosoi, S. Terashima, and T.M. Otsuka, J. Electron. Mater. 33, 321 (2004).

    Article  CAS  Google Scholar 

  9. W.J. Chen, Y.L. Lee, T.Y. Wu, T.C. Chen, and M.T. Lin, J. Electron. Mater. 47, 1 (2018).

    CAS  Google Scholar 

  10. C.E. Ho, Y.W. Lin, S.C. Yang, C.R. Kao, and D.S. Jiang, J. Electron. Mater. 35, 1017 (2006).

    Article  CAS  Google Scholar 

  11. M.N. Islam, A. Sharif, and Y.C. Chan, J. Electron. Mater. 34, 143 (2005).

    Article  CAS  Google Scholar 

  12. C.C. Chang, Y.W. Lin, Y.W. Wang, and C.R. Kao, J. Alloy Compd. 492, 99 (2010).

    Article  CAS  Google Scholar 

  13. M.L. Huang, and F. Yang, Sci Rep-uk. 4, 7117 (2014).

    Article  CAS  Google Scholar 

  14. Z. Li, G.Y. Li, L.X. Cheng, and Y. Tang, J. Alloy Compd. 685, 983 (2016).

    Article  CAS  Google Scholar 

  15. M. Amagai, Microelectron Reliab. 48, 1 (2008).

    Article  CAS  Google Scholar 

  16. L. Ping, Y. Pei, and L. Jim, J Alloy Compd. 486, 474 (2009).

    Article  CAS  Google Scholar 

  17. Y. Pei, L. Ping, and J. Liu, J. Alloy Compd. 462, 73 (2008).

    Article  CAS  Google Scholar 

  18. F. Zhang, M. Li, C.C. Chum, and Z.C. Shao, J. Electron. Mater. 32, 123 (2003).

    Article  CAS  Google Scholar 

  19. J. Shen, and Y.C. Chan, J. Alloy Compd. 477, 552 (2009).

    Article  CAS  Google Scholar 

  20. S.S. Ha, J.W. Kim, J.W. Yoon, S.O. Ha, and S.B. Jung, J Electron Mater. 38, 70 (2009).

    Article  CAS  Google Scholar 

  21. Y.S. Lai, Y.T. Chiu, and J. Chen, J. Electron. Mater. 37, 1624 (2008).

    Article  CAS  Google Scholar 

  22. Y.H. Lin, C.M. Tsai, Y.C. Hu, Y.L. Lin, and C.R. Kao, J. Electron. Mater. 34, 27 (2005).

    Article  CAS  Google Scholar 

  23. C.L. Chuang, J.N. Aoh, Q.A. Liao, C.C. Hsu, S.J. Liao, and G.S. Huang, J. Electron. Mater. 37, 1742 (2008).

    Article  CAS  Google Scholar 

  24. S.H. Park, S.H. Lee, Y.H. Kim, Y.W. Kim, and S.W. Ryu, Semicond Sci. Tech. 32, 035022.1 (2017).

    Article  CAS  Google Scholar 

  25. C. Guan, J. Zou, H. Liu, Q. Lu, Y. Li, Y. Bobo, and M. Shi, J. Electron. Mater. 50, 1 (2021).

    CAS  Google Scholar 

  26. S. Nai, J. Wei, and M. Gupta, J. Alloy Compd. 473, 100 (2009).

    Article  CAS  Google Scholar 

  27. Y. Liu, F. Sun, H. Zhang, T. Xin, C.A. Yuan, and G. Zhang, Microelectron. Reliab. 55, 1234 (2015).

    Article  CAS  Google Scholar 

  28. Y.J. Chen, C.K. Chung, C.R. Yang, and C.R. Kao, Microelectron Reliab. 53, 47 (2013).

    Article  CAS  Google Scholar 

  29. F. Hodaj, O. Liashenko, and Yu, Acta Mater. 99, 106 (2015).

    Article  CAS  Google Scholar 

  30. C.H. Chen, S.W. Hsu, and T.H. Chuang, J. Electron. Mater. 50, 1 (2020).

    CAS  Google Scholar 

  31. K.Z. Wang, and C.M. Chen, J. Electron. Mater. 34, 1543 (2005).

    Article  CAS  Google Scholar 

  32. S.J. Wang, and C.Y. Liu, J. Electron. Mater. 35, 1955 (2006).

    Article  CAS  Google Scholar 

  33. K.T. Wu, S.J. Hwang, and H.H. Lee, J. Electron. Mater. 46, 5094 (2017).

    Article  CAS  Google Scholar 

  34. D. Li, C. Liu, and P.P. Conway, J. Electron. Mater. 35, 388 (2006).

    Article  CAS  Google Scholar 

  35. S.H. Kim, J.Y. Kim, J. Yu, and T.Y. Lee, J. Electron. Mater. 33, 948 (2004).

    Article  CAS  Google Scholar 

  36. J. Chengshuo, F. Jiajie, Q. Cheng, Z. Hao, F. Xuejun, G. Weiling, and Z. Guoqi, IEEE T Comp. Pack. Man. 99, 1 (2018).

    Google Scholar 

  37. B. Zhou, T.R. Bieler, T.K. Lee, and K.C. Liu, J. Electron. Mater. 38, 2702 (2009).

    Article  CAS  Google Scholar 

  38. H.B. Qin, X.P. Zhang, M.B. Zhou, X.P. Li, and Y.W. Mai, Microelectron. Reliab. 55, 1214 (2015).

    Article  CAS  Google Scholar 

  39. C.K. Wong, J.H.L. Pang, J.W. Tew, B.K. Lok, H.J. Lu, F.L. Ng, and Y.F. Sun, Microelectron. Reliab. 48, 611 (2008).

    Article  CAS  Google Scholar 

  40. J.W. Yoon, and S.B. Jung, J Alloy Compd. 458, 200 (2008).

    Article  CAS  Google Scholar 

  41. T. An, and F. Qin, Microelectron. Reliab. 54, 932 (2014).

    Article  CAS  Google Scholar 

  42. F.X. Che, and J. Pang, J. Alloy Compd. 541, 6 (2012).

    Article  CAS  Google Scholar 

  43. J.W. Yoon, and S.B. Jung, J. Alloy Compd. 407, 141 (2006).

    Article  CAS  Google Scholar 

  44. Y.Y. Shiue, and T.H. Chuang, J. Alloy Compd. 491, 610 (2010).

    Article  CAS  Google Scholar 

  45. Q.K. Zhang, and Z.F. Zhang, J. Alloy Compd. 485, 853 (2009).

    Article  CAS  Google Scholar 

  46. C. Jie, J. Shen, S. Lai, M. Dong, and X. Wang, J. Alloy Compd. 489, 631 (2010).

    Article  CAS  Google Scholar 

  47. S.Y. Chang, Y.C. Huang, and Y.M. Lin, J. Alloy Compd. 490, 508 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Shanghai Alliance Plan (LM201978), the Science and Technology Planning Project of Zhejiang Province, China (2018C01046), and Enterprise-funded Latitudinal Research Projects (J2016-141), (J2017-171), (J2017-293), and (J2017-243).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuefeng Li or Jun Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Chen, Y., Li, Y. et al. Research on Microstructure and Shear Behavior of Au/Sn-Ag-Cu/Cu Lead-free Solder Joints at Different Soldering Temperatures. J. Electron. Mater. 50, 5965–5980 (2021). https://doi.org/10.1007/s11664-021-09107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09107-z

Keywords

Navigation