Skip to main content
Log in

Dynamic Optical Study of Flexible Multiwall Carbon Nanotube Paper Using Terahertz Spectroscopy

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The photon energy of terahertz waves is of the order of a few milli-electronvolts and is much lower than the thermal energy of ~ 26 meV at room temperature. However, the fast and sensitive detection of terahertz waves is notoriously difficult at ambient conditions. Moreover, the material flexibility is also very important within existing terahertz technologies for development of wearable and portable terahertz devices. We experimentally demonstrate that multiwall carbon nanotube flexible paper (MWCNT-FP) is one of the potential candidates to be used for terahertz detectors at room temperature. For the first time, MWCNT-FP sample is measured over a wide frequency band ranging from 0.02 to 4.5 THz at room temperature as compared to previously reported materials that demonstrate prominent frequency response between 0.2 and 2.5 THz. The MWCNT-FP sample delivered wide band absorption between 0.02 and 4.0 THz. Over the transmission, a high absorption peak is detected at 1.0 THz. The optical density spectrum is observed around 1.25 and 3.37 THz in the low-frequency regime and high-frequency regime, respectively. The present results suggest the potential application of MWCNT-FP as a wearable THz detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).

    Article  CAS  Google Scholar 

  2. M. Tonouchi, Nat. Photonics 1, 97 (2007).

    Article  CAS  Google Scholar 

  3. J.P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, J. Infrared Millim. Terahertz Waves 35, 382 (2014).

    Article  CAS  Google Scholar 

  4. K. Kawase, T. Shibuya, S.I. Hayashi, and K. Suizu, C. R. Phys. 11, 510 (2010).

    Article  CAS  Google Scholar 

  5. D. Suzuki, S. Oda, and Y. Kawano, Nat. Photonics 10, 809 (2016).

    Article  CAS  Google Scholar 

  6. C. Zandonella, Nature 424, 721 (2003).

    Article  CAS  Google Scholar 

  7. M.C. Kemp, P.Taday, B. Cole, J. Cluff, A. Fitzgerald, and W. Tribe, in SPIE Proceedings Aerosense (2003), p. 5070.

  8. Y. Kawano, Contemp. Phys. 54, 143 (2013).

    Article  CAS  Google Scholar 

  9. H. Cheon, J.H. Paik, M. Choi, H.-J. Yang, and J.-H. Son, Sci. Rep. 9, 6413 (2019).

    Article  Google Scholar 

  10. S. Keren-Zur, M. Tal, S. Fleischer, D.M. Mittleman, and T. Ellenbogen, Nat. Commun. 10, 1778 (2019).

    Article  Google Scholar 

  11. K. Leng, W. Fu, Y. Liu, M. Chhowalla, and K.P. Loh, Nat. Rev. Mater. 5, 482 (2020).

    Article  CAS  Google Scholar 

  12. C. Ciesla, D. Arnone, A. Corchia, D. Crawley, C. Longbottom, E. Linfield, and M. Pepper, Biomedical Applications of Terahertz Pulse Imaging (Bellingham: SPIE, 2000).

    Book  Google Scholar 

  13. T. Otsuji, IEEE Trans. Terahertz Sci. Technol. 5, 1110 (2015).

    CAS  Google Scholar 

  14. F. Simoens, Physics and Applications of Terahertz Radiation. ed. M. Perenzoni and D.J. Paul (Berlin: Springer, 2014), p. 35.

    Chapter  Google Scholar 

  15. E. Hack, L. Valzania, G. Gäumann, M. Shalaby, C.P. Hauri, and P. Zolliker, Sensors 16, 11 (2016).

    Article  Google Scholar 

  16. A.K. Sood, G.G. Pethuraja, R.E. Welser, N.K. Dhar, and P.S. Wijewarnasuriya, Nanostructure Technology for EO/IR Detector Applications, Nanorods and Nanocomposites (London: Intech Open, 2019).

    Google Scholar 

  17. A.A. Balandin, Nat. Mater. 10, 569 (2011).

    Article  CAS  Google Scholar 

  18. M. Tarasov, J. Svensson, J. Weis, L. Kuzmin, and E. Campbell, JETP Lett. 84, 267 (2006).

    Article  CAS  Google Scholar 

  19. P. Avouris, Z. Chen, and V. Perebeinos, Nat. Nanotechnol. 2, 605 (2007).

    Article  CAS  Google Scholar 

  20. Y. Segawa, H. Ito, and K. Itami, Nat. Rev. Mater. 1, 15002 (2016).

    Article  CAS  Google Scholar 

  21. P. Avouris, M. Freitag, and V. Perebeinos, Nat. Photonics 2, 341 (2008).

    Article  CAS  Google Scholar 

  22. F. Leonard, The Physics of Carbon Nanotube Devices (Amsterdam: Elsevier, 2008).

    Google Scholar 

  23. S. Nanot, E.H. Hároz, J.-H. Kim, R.H. Hauge, and J. Kono, Adv. Mater. 24, 4977 (2012).

    Article  CAS  Google Scholar 

  24. D. Spirito, D. Coquillat, S.L.D. Bonis, A. Lombardo, M. Bruna, A.C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M.S. Vitiello, Appl. Phys. Lett. 104, 061111 (2014).

    Article  Google Scholar 

  25. S.L. Chen, Y.-C. Chang, C. Zhang, J.G. Ok, T. Ling, M.T. Mihnev, T.B. Norris, and L.J. Guo, Nat. Photonics 8, 537 (2014).

    Article  CAS  Google Scholar 

  26. F.R.G. Bagsican, M. Wais, N. Komatsu, W. Gao, L.W. Weber, K. Serita, H. Murakami, K. Held, F.A. Hegmann, M. Tonouchi, J. Kono, I. Kawayama, and M. Battiato, Nano Lett. 20, 3098 (2020).

    Article  CAS  Google Scholar 

  27. M. Portnoi, O. Kibis, and M.R. da Costa, in Proceedings of SPIE 6328, Nanomodeling II (2006), p. 632805.

  28. R.R. Hartmann, J. Kono, and M.E. Portnoi, Nanotechnology 25, 322001 (2014).

    Article  CAS  Google Scholar 

  29. L. Ren, Q. Zhang, S. Nanot, I. Kawayama, M. Tonouchi, and J. Kono, J. Infrared Millim. Terahertz Waves 33, 846 (2012).

    Article  CAS  Google Scholar 

  30. O. Hellman, I.A. Abrikosov, and S.I. Simak, Phys. Rev. B 84, 180301 (2011).

    Article  Google Scholar 

  31. L. Ren, Q. Zhang, C.L. Pint, A.K. Wójcik, M. Bunney, T. Arikawa, I. Kawayama, M. Tonouchi, R.H. Hauge, A.A. Belyanin, and J. Kono, Phys. Rev. B 87, 161401 (2013).

    Article  Google Scholar 

  32. Z. Wu, L. Wang, Y. Peng, A. Young, S. Seraphin, and H. Xin, J. Appl. Phys. 103, 094324 (2008).

    Article  Google Scholar 

  33. E.P.J. Parrott, J.A. Zeitler, J. McGregor, S.-P. Oei, H.E. Unalan, W.I. Milne, J.-P. Tessonnier, D.S. Su, R. Schlögl, and L.F. Gladden, Adv. Mater. 21, 3953 (2009).

    Article  CAS  Google Scholar 

  34. H.P. Maheshwari, I. Elizabeth, B.P. Singh, C. Gupta, R.B. Mathur, and G. Sukumaran, in United States Patent, N. D. ed. CSIR-National Physical Laboratory, India (Council of Scientific and Industrial Research, 2018), p. 09.

  35. A. Chaudhary, R. Kumar, S. Teotia, S.K. Dhawan, S.R. Dhakate, and S. Kumari, J. Mater. Chem. C 5, 322 (2017).

    Article  CAS  Google Scholar 

  36. S. Sharma, B.P. Singh, A.S. Babal, S. Teotia, J. Jyoti, and S.R. Dhakate, J. Mater. Sci. 52, 7503 (2017).

    Article  CAS  Google Scholar 

  37. B.P. Singh, S. Teotia, A. Chaudhary, I. Elizabeth, A. Srivastava, S. Kumari, S.R. Dhakate, S. Gopukumar, and R.B. Mathur, Adv. Mater. Lett. 8, 1038 (2017).

    Google Scholar 

  38. B. Bhattacharyya, A. Sharma, M. Kaur, B.P. Singh, and S. Husale, J. Alloys Compd. 851, 156759 (2021).

    Article  CAS  Google Scholar 

  39. A. Bayer, M. Pozimski, S. Schambeck, D. Schuh, R. Huber, D. Bougeard, and C. Lange, Nano Lett. 17, 6340 (2017).

    Article  CAS  Google Scholar 

  40. M. Walther, B.M. Fischer, and P. Uhd Jepsen, Chem. Phys. 288, 261 (2003).

    Article  CAS  Google Scholar 

  41. M. Jewariya, M. Nagai, and K. Tanaka, Phys. Rev. Lett. 105, 203003 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, CSIR-National Physical Laboratory for his continuous inspiration and support. The Author Dr. SN acknowledges CSIR HRDG, New Delhi, India, for the financial support provided by with Reference No. HRDG/CSIR-Nehru PDF/EN, ES&PS/EMR-1/01/2019 dated 29/08/2019. Author MJ acknowledges SERB, New Delhi, India, for the financial support provided with Reference No. SB/EMEQ-022/2014-2019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subhash Nimanpure or Mukesh Jewariya.

Ethics declarations

Conflict of interest

All authors of the manuscript stated that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimanpure, S., Pandey, A., Singh, G. et al. Dynamic Optical Study of Flexible Multiwall Carbon Nanotube Paper Using Terahertz Spectroscopy. J. Electron. Mater. 50, 5625–5631 (2021). https://doi.org/10.1007/s11664-021-09077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09077-2

Keywords

Navigation