Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Annular modes of variability in the atmospheres of Mars and Titan

Abstract

Annular modes explain much of the internal variability of Earth’s atmosphere but have never been identified as influential on other planets. Using data assimilation datasets for Mars and a general circulation model for Titan, we demonstrate that annular modes are prominent in the atmospheres of both worlds, capturing a larger fraction of their respective variabilities than Earth’s. One mode describes latitudinal shifts of the jet on Mars, as on Earth, and vertical shifts of the jet on Titan. Another describes pulses of mid-latitude eddy kinetic energy on all three worlds, albeit with somewhat different characteristics. We demonstrate that this latter mode has predictive power for regional dust activity on Mars, revealing its usefulness for understanding Martian weather. The similarity of annular variability in dynamically diverse worlds suggests its ubiquity across the Solar System, potentially extending to exoplanets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatial signature of the dipolar annular mode in anomalous zonal-mean zonal wind on Mars for both reanalysis datasets.
Fig. 2: Spatial signature of the first annular mode in anomalous zonal-mean eddy kinetic energy on Mars for both reanalysis datasets.
Fig. 3: Polar plots of vertically (mass) integrated eddy kinetic energy regressed onto the first annular mode in anomalous zonal-mean eddy kinetic energy for Earth, Mars and Titan.
Fig. 4: Regression of the first annular mode in anomalous zonal-mean eddy kinetic energy from the EMARS northern hemisphere on the Mars Dust Activity Database for Mars Year 31.
Fig. 5: Zonal-mean structure of the annular modes in zonal-mean zonal wind and eddy kinetic energy on Titan.

Similar content being viewed by others

Data availability

The Mars Analysis Correction Data Assimilation is available at https://catalogue.ceda.ac.uk/uuid/01c44fb05fbd6e428efbd57969a11177. The Ensemble Mars Atmospheric Reanalysis System is available at ftp://ftp.pasda.psu.edu/pub/commons/meteorology/greybush/emars-1p0/data/. ERA-Interim data are available at https://www.ecmwf.int. The Mars Dust Activity Database is available at https://doi.org/10.7910/DVN/F8R2JX. Titan Atmospheric Model results are archived on Zenodo at https://doi.org/10.5281/zenodo.4780576.

Code availability

The source code for TAM is currently not publicly available. EOF analysis was done in part with the Climate Data Toolbox for MATLAB (https://github.com/chadagreene/CDT). Scripts used in the generation of figures can be obtained from the corresponding author upon request.

References

  1. Thompson, D. W. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: month-to-month variability. J. Clim. 13, 1000–1016 (2000).

    Article  ADS  Google Scholar 

  2. Hassanzadeh, P. & Kuang, Z. Quantifying the annular mode dynamics in an idealized atmosphere. J. Atmos. Sci. 76, 1107–1124 (2019).

    Article  ADS  Google Scholar 

  3. Trenberth, K. E. & Paolino, D. A. Jr. Characteristic patterns of variability of sea level pressure in the Northern Hemisphere. Mon. Weather Rev. 109, 1169–1189 (1981).

    Article  ADS  Google Scholar 

  4. Hartmann, D. L. & Lo, F. Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci. 55, 1303–1315 (1998).

    Article  ADS  Google Scholar 

  5. Hartmann, D. L., Wallace, J. M., Limpasuvan, V., Thompson, D. W. & Holton, J. R. Can ozone depletion and global warming interact to produce rapid climate change? Proc. Natl Acad. Sci. USA 97, 1412–1417 (2000).

    Article  ADS  Google Scholar 

  6. Lorenz, D. J. & Hartmann, D. L. Eddy-zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci. 58, 3312–3327 (2001).

    Article  ADS  Google Scholar 

  7. Butler, A. H., Thompson, D. W. & Gurney, K. R. Observed relationships between the Southern Annular Mode and atmospheric carbon dioxide. Glob. Biogeochem. Cycles 21, GB4014 (2007).

    Article  ADS  Google Scholar 

  8. Thompson, D. W. J. & Woodworth, J. D. Barotropic and baroclinic annular variability in the Southern Hemisphere. J. Atmos. Sci. 71, 1480–1493 (2014).

    Article  ADS  Google Scholar 

  9. Li, Y. & Thompson, D. W. J. Observed signatures of the barotropic and baroclinic annular modes in cloud vertical structure and cloud radiative effects. J. Clim. 29, 4723–4740 (2016).

    Article  ADS  Google Scholar 

  10. Thompson, D. W. J. & Wallace, J. M. The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25, 1297–1300 (1998).

    Article  ADS  Google Scholar 

  11. Gerber, E. P. & Thompson, D. W. J. What makes an annular mode ‘annular’? J. Atmos. Sci. 74, 317–332 (2017).

    Article  ADS  Google Scholar 

  12. Boljka, L., Shepherd, T. G. & Blackburn, M. On the coupling between barotropic and baroclinic modes of extratropical atmospheric variability. J. Atmos. Sci. 75, 1853–1871 (2018).

    Article  ADS  Google Scholar 

  13. Limpasuvan, V. & Hartmann, D. L. Wave-maintained annular modes of climate variability. J. Clim. 13, 4414–4429 (2000).

    Article  ADS  Google Scholar 

  14. Thompson, D. W. J. & Li, Y. Baroclinic and barotropic annular variability in the Northern Hemisphere. J. Atmos. Sci. 72, 1117–1136 (2015).

    Article  ADS  Google Scholar 

  15. Thompson, D. W. J. & Barnes, E. A. Periodic variability in the large-scale southern Hemisphere atmospheric circulation. Science 343, 641–645 (2014).

    Article  ADS  Google Scholar 

  16. Leroy, S. S., Yung, Y. L., Richardson, M. I. & Wilson, R. J. Principal modes of variability of Martian atmospheric surface pressure. Geophys. Res. Lett. 30, 1707 (2003).

    Article  ADS  Google Scholar 

  17. Yamashita, Y., Kuroda, T. & Takahashi, M. Maintenance of zonal wind variability associated with the annular mode on Mars. Geophys. Res. Lett. 34, L16819 (2007).

    Article  ADS  Google Scholar 

  18. Barnes, J. R. et al. in The Atmosphere and Climate of Mars (eds Haberle, R. M. et al) 229–294, Ch. 9 (Cambridge Univ. Press, 2017).

  19. Tabataba-Vakili, F. et al. A Lorenz/Boer energy budget for the atmosphere of Mars from a ‘reanalysis’ of spacecraft observations. Geophys. Res. Lett. 42, 8320–8327 (2015).

    Article  ADS  Google Scholar 

  20. Greybush, S. J., Kalnay, E., Hoffman, M. J. & Wilson, R. J. Identifying Martian atmospheric instabilities and their physical origins using bred vectors. Q. J. R. Meteorol. Soc. 139, 639–653 (2013).

    Article  ADS  Google Scholar 

  21. Battalio, M., Szunyogh, I. & Lemmon, M. Energetics of the martian atmosphere using the Mars Analysis Correction Data Assimilation (MACDA) dataset. Icarus 276, 1–20 (2016).

    Article  ADS  Google Scholar 

  22. Battalio, M., Szunyogh, I. & Lemmon, M. Wave energetics of the southern hemisphere of Mars. Icarus 309, 220–240 (2018).

    Article  ADS  Google Scholar 

  23. Ruan, T., Lewis, N. T., Lewis, S. R., Montabone, L. & Read, P. L. Investigating the semiannual oscillation on Mars using data assimilation. Icarus 333, 404–414 (2019).

    Article  ADS  Google Scholar 

  24. Mitchell, J. L. & Lora, J. M. The climate of Titan. Annu. Rev. Earth Planet. Sci. 44, 353–380 (2016).

    Article  ADS  Google Scholar 

  25. Lora, J. M. & Mitchell, J. L. Titan’s asymmetric lake distribution mediated by methane transport due to atmospheric eddies. Geophys. Res. Lett. 42, 6213–6220 (2015).

    Article  ADS  Google Scholar 

  26. Faulk, S. P., Mitchell, J. L., Moon, S. & Lora, J. M. Regional patterns of extreme precipitation on Titan consistent with observed alluvial fan distribution. Nat. Geosci. 10, 827–831 (2017).

    Article  ADS  Google Scholar 

  27. Lora, J. M., Tokano, T., Vatant d’Ollone, J., Lebonnois, S. & Lorenz, R. D. A model intercomparison of Titan’s climate and low-latitude environment. Icarus 333, 113–126 (2019).

    Article  ADS  Google Scholar 

  28. Lebonnois, S., Burgalat, J., Rannou, P. & Charnay, B. Titan global climate model: a new 3-dimensional version of the IPSL Titan GCM. Icarus 218, 707–722 (2012).

    Article  ADS  Google Scholar 

  29. Montabone, L. et al. The Mars Analysis Correction Data Assimilation (MACDA) dataset v1.0. Geosci. Data J. 1, 129–139 (2014).

    Article  ADS  Google Scholar 

  30. Greybush, S. J. et al. The Ensemble Mars Atmosphere Reanalysis System (EMARS) version 1.0. Geosci. Data J. 6, 137–150 (2019).

    Article  ADS  Google Scholar 

  31. Lora, J. M., Lunine, J. I. & Russell, J. L. GCM simulations of Titan’s middle and lower atmosphere and comparison to observations. Icarus 250, 516–528 (2015).

    Article  ADS  Google Scholar 

  32. Waugh, D. W. et al. Martian polar vortices: comparison of reanalyses. J. Geophys. Res. Planets 121, 1770–1785 (2016).

    Article  ADS  Google Scholar 

  33. Battalio, M. & Wang, H. Eddy evolution during large dust storms. Icarus 338, 113507 (2020).

    Article  Google Scholar 

  34. Hollingsworth, J. L. et al. Orographic control of storm zones on Mars. Nature 380, 413–416 (1996).

    Article  ADS  Google Scholar 

  35. Battalio, M. & Wang, H. The Aonia-Solis-Valles dust storm track in the southern hemisphere of Mars. Icarus 321, 367–378 (2019).

    Article  ADS  Google Scholar 

  36. Mooring, T. A. & Wilson, R. J. Transient eddies in the MACDA Mars reanalysis. J. Geophys. Res. Planets 120, 1671–1696 (2015).

    Article  ADS  Google Scholar 

  37. Battalio, M. & Wang, H. The Mars Dust Activity Database (MDAD): a comprehensive statistical study of dust storm sequences. Icarus 354, 114059 (2021).

    Article  Google Scholar 

  38. Wang, H. & Richardson, M. I. The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus 251, 112–127 (2015).

    Article  ADS  Google Scholar 

  39. Rossow, W. B. & Williams, G. P. Large-scale motion in the Venus stratosphere. J. Atmos. Sci. 36, 377–389 (1979).

    Article  ADS  Google Scholar 

  40. Charney, J. G. The dynamics of long waves in a baroclinic westerly current. J. Meteorol. 4, 135–162 (1947).

    Article  MathSciNet  Google Scholar 

  41. Kass, D. M., Kleinböhl, A., McCleese, D. J., Schofield, J. T. & Smith, M. D. Interannual similarity in the Martian atmosphere during the dust storm season. Geophys. Res. Lett. 43, 6111–6118 (2016).

    Article  ADS  Google Scholar 

  42. Schaller, E. L., Brown, M. E., Roe, H. G. & Bouchez, A. H. A large cloud outburst at Titan’s south pole. Icarus 182, 224–229 (2006).

    Article  ADS  Google Scholar 

  43. Ando, H. et al. The puzzling Venusian polar atmospheric structure reproduced by a general circulation model. Nat. Commun. 7, 10398 (2016).

    Article  ADS  Google Scholar 

  44. Williams, G. P. Jovian dynamics. Part III: multiple, migrating, and equatorial jets. J. Atmos. Sci. 60, 1270–1296 (2003).

    Article  ADS  Google Scholar 

  45. Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b. Nature 465, 1049–1051 (2010).

    Article  ADS  Google Scholar 

  46. Uppala, S. et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005).

    Article  ADS  Google Scholar 

  47. Smith, M. D. Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004).

    Article  ADS  Google Scholar 

  48. Forget, F. et al. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. Planets 104, 24155–24175 (1999).

    Article  ADS  Google Scholar 

  49. Lewis, S. R., Read, P. L., Conrath, B. J., Pearl, J. C. & Smith, M. D. Assimilation of thermal emission spectrometer atmospheric data during the Mars Global Surveyor aerobraking period. Icarus 192, 327–347 (2007).

    Article  ADS  Google Scholar 

  50. Kleinböhl, A. et al. Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J. Geophys. Res. Planets 114, E10006 (2009).

    Article  ADS  Google Scholar 

  51. Greybush, S. J. et al. Ensemble Kalman filter data assimilation of Thermal Emission Spectrometer temperature retrievals into a Mars GCM. J. Geophys. Res. Planets 117, E11008 (2012).

    Article  ADS  Google Scholar 

  52. Greybush, S. J., Gillespie, H. E. & Wilson, R. J. Transient eddies in the TES/MCS Ensemble Mars Atmosphere Reanalysis System (EMARS). Icarus 317, 158–181 (2019).

    Article  ADS  Google Scholar 

  53. Faulk, S. P., Lora, J. M., Mitchell, J. L. & Milly, P. C. D. Titan’s climate patterns and surface methane distribution due to the coupling of land hydrology and atmosphere. Nat. Astron. 4, 390–398 (2020).

    Article  ADS  Google Scholar 

  54. Battalio, J. M., Lora, J. M., Rafkin, S. & Soto, A. The interaction of deep convection with the general circulation in Titan’s atmosphere. Part 2: impacts on the climate. Icarus https://doi.org/10.1016/j.icarus.2021.114623 (2021).

  55. Lora, J. M. & Ádámkovics, M. The near-surface methane humidity on Titan. Icarus 286, 270–279 (2017).

    Article  ADS  Google Scholar 

  56. Newman, C. E., Richardson, M. I., Lian, Y. & Lee, C. Simulating Titan’s methane cycle with the TitanWRF General Circulation Model. Icarus 267, 106–134 (2016).

    Article  ADS  Google Scholar 

  57. North, G. R., Bell, T. L., Cahalan, R. F. & Moeng, F. J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev. 110, 699–706 (1982).

    Article  ADS  Google Scholar 

  58. Greene, C. et al. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosyst. 20, 3774–3781 (2019).

    Article  ADS  Google Scholar 

  59. Chung, C. & Nigam, S. Weighting of geophysical data in principal component analysis. J. Geophys. Res. Atmos. 104, 16925–16928 (1999).

    Article  ADS  Google Scholar 

  60. Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M. & Bladé, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 12, 1990–2009 (1999).

    Article  ADS  Google Scholar 

  61. Lewis, S. R. et al. The solsticial pause on Mars: 1. A planetary wave reanalysis. Icarus 264, 456–464 (2016).

    Article  ADS  Google Scholar 

  62. Battalio, M. & Wang, H. The Mars Dust Activity Database (MDAD) (Harvard Dataverse, 2019); https://doi.org/10.7910/DVN/F8R2JX

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.M.B. conceived the work. J.M.B. performed the analysis and wrote the manuscript, with contributions from J.M.L. J.M.L. ran the TAM simulations.

Corresponding author

Correspondence to J. Michael Battalio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The spatial signature of the first non-dipolar annular mode in anomalous zonal-mean zonal wind on Mars for both reanalysis datasets.

(a–l) As in Fig. 1, but for the first non-dipolar U-AM.

Extended Data Fig. 2 Polar plots of the regression of the first three EOFs onto the anomalous surface pressure from EMARS in the northern hemisphere.

(a, c, e) results performed using weighting of \(\sqrt {cos\phi }\). (b, d, f) results using cosϕ. The individual panel titles indicate the percent of variance explained in each EOF. Topography is shown in 2000 m increments with the 0 m contour dot-dashed in gray and negative contours dashed. Regressions are only shown exceeding 99% confidence.

Extended Data Fig. 3 Polar plots of the regression of the Martian U-AM onto the anomalous surface pressure (a–d) and the regression of the Martian EKE-AM onto the anomalous, vertically (mass) integrated EKE (e–h).

(a, c, e, g) MACDA. (b, d, f, h) EMARS. Topography is shown in 2000 m increments with the 0 m contour dot-dashed in gray and negative contours dashed. Regressions are only shown exceeding 99% confidence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battalio, J.M., Lora, J.M. Annular modes of variability in the atmospheres of Mars and Titan. Nat Astron 5, 1139–1147 (2021). https://doi.org/10.1038/s41550-021-01447-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01447-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing