Skip to main content
Log in

Revealing the genetic diversity and population structure in Aegilops crassa and Aegilops cylindrica species using molecular markers and physio-chemical traits

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

In this work, we evaluated genetic diversity and population structure in eighty-eight Aegilops accessions using several physio-chemical traits such as shoot fresh and dry biomasses (SFW and SDW), photosynthetic pigments and activity of several antioxidant enzymes such as catalase, guaiacol peroxidase, peroxidase, and ascorbate peroxidase (APX), as well as 24 simple sequence repeat markers (SSR) under two control and water deficit stress conditions. The results indicated that water deficit stress dramatically affected SFW, SDW and photosynthetic pigments, while activity of all antioxidant enzymes were increased by water deficit stress compared to the control conditions. Statistical analysis of the phenotypic data showed a significant level of variation among the 88 investigated accessions. The results of correlation analysis showed that under both conditions photosynthetic pigments had a significant correlation with each other. The correlation between SDW and the activity of APX was positive and significant. The results of AMOVA using 24 SSR markers revealed that the genetic diversity observed among populations is more than within populations. Multivariate analyses grouped all investigated accessions in the clear groups based on their genomic constitutions. Based on results, 17 and 16 markers showed significant association with the measured traits under control and water deficit stress conditions, respectively. Our findings showed eight MTAs showed sufficiently stable expression across both control and stress conditions. Furthermore, several markers, especially Xgwm-455 associated with multiple traits across both conditions. In conclusion, these results could contribute to completing knowledge of the genetics and breeding for key physio-chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abtahi M, Majidi MM, Mirlohi A, Saeidnia F (2018) Association analysis for seed yield, forage yield and traits related to drought tolerance in orchardgrass (Dactylis glomerata). Crop past Sci 69:150–164

    Article  CAS  Google Scholar 

  • Ahmadi J, Pour-Aboughadareh A, Fabriki Ourang S, Poczai KP, P, (2020) Unraveling salinity stress responses in ancestral and neglected wheat species at early growth stage: A baseline for utilization in future wheat improvement programs. Physiol Mol Biol Plants 26:537–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmadi J, Pour-Aboughadareh A, Fabriki Ourang S, Mehrabi AA, Siddique KHM (2018a) Screening wheat germplasm for seedling root architectural traits under contrasting water regimes: Potential sources of variability for drought adaptation. Arch Agron Soil Sci 64:1351–1365

    Article  Google Scholar 

  • Ahmadi J, Pour-Aboughadareh A, Fabriki Ourang S, Mehrabi AA, Siddique KHM (2018b) Wild relatives of wheat: Aegilops-Triticum accessions disclose different antioxidative and physiological response to water stress. Acta Physiol Plant 40:90

    Article  CAS  Google Scholar 

  • Ahmadi J, Pour-Aboughadareh A (2015) Allelic variation of glutenin and gliadin genes in Iranian einkorn wheat. Bio Env Sci 7:168–179

    Google Scholar 

  • Akbari M, Katam R, Husain R, Farajpour M, Mazzuca S, Mahna N (2020) Sodium chloride induced stress responses of antioxidative activities in leaves and roots of pistachio rootstock. Biomolecules 10:189

    Article  CAS  PubMed Central  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Bansal M, Kaur S, Dhaliwal HS, Bains NS, Bariana HS, Chhuneja P, Bansal UK (2017) Mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance loci in wheat. Plant Pathol 66:38–44

    Article  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Ceoloni C, Kuzmanovic L, Ruggeri R, Rossini F, Forte P, Cuccurullo A, Bitti A (2017) Harnessing genetic diversity of wild gene pools to enhance wheat crop production and sustainability: challenges and opportunities. Diversity 9:55

    Article  CAS  Google Scholar 

  • Chance B, Maehly SK (1955) Assay of catalase and peroxidase. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Christenhusz MJM, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261:201–217

    Article  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    Article  CAS  PubMed  Google Scholar 

  • Czyczlo-Mysza I, Tyrka M, Marcinska I, Skrzypek E, Karbarz M, Dziurka M, Hura T, Dziurka K, Quarrie SA (2013) Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol Breed 32:189–210

    Article  Google Scholar 

  • Debibakas S, Rocher S, Garsmeur O, Toubi L, Roques D, D’Hont A, Hoarau JY, Daugrois JH (2014) Prospecting sugarcane resistance to sugarcane yellow leaf virus by genome-wide association. Theor Appl Genet 127:1719–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz P, Betti M, Sanchez DH, Udvari MK, Monza J, Marquez A (2010) Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicas under drought stress. New Phytoloist 188:1001–1013

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JK (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dvorak J, Luo M, Yang Z (1998) Genetic evidence on the origin of Triticum aestivum L., The origins of agriculture and crop domestication. In: Proceedings of the Harlan symposium. ICARDA, Aleppo, pp 235–251.

  • Earl DA, vonHoldt BM (2012) Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Etminan A, Pour-Aboughadareh A, Mehrabi AA, Shooshtari L, Ahmadi-Rad A, Moradkhani H (2019) Molecular characterization of the wild relatives of wheat using CAAT-box derived polymorphism. Plant Biosystem 153:398–405

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Food and agriculture organization (2020). Available at http://www.fao.org/worldfoodsituation/csdb/en/

  • Gurung S, Mamidi S, Bonman JM, Xiong M, Brown-Guedira G, Adhikari TB (2014) Genome-wide association study reveals novel quantitative trait loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS One 9:e108179

  • Hadwan M (2018) Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochem 19:1–7

    Article  CAS  Google Scholar 

  • Hairat S, Khurana P (2015) Evaluation of Aegilops tauschii and Aegilops speltoides for acquired termotolerance: Implications in wheat breeding programmes. Plant Physiol Biochem 95:65–74

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Ren J, Ren X, Huang S, Sabiel SAI, Luo M, Nevo E, Fu C, Peng J, Sun D (2015) Association of agronomic traits with SNP markers in durum wheat (Triticum turgidum L. durum (Desf.)). PLoS One 10:e0130854.

  • Ivanizs L, Monostori I, Farkas A, Megyeri M, Miko P, Turkosi E, Gaal E, Lenyko-Thegze A, Szoke-Pazsi K, Szakacs E, Darko E, Kiss T, Kilian A, Molnar I (2019) Unlocking the genetic diversity and population structure of a wild gene source of wheat, Aegilops biuncialis Vis., and its relationship with the heading time. Font. Plant 10:1531.

  • Jing-Ian Z, Hong-wei W, Xiao-cum Z, Xu-ye D, An-fei L, Ling-rang K (2015) Association analysis of grain traits with SSR markers between Aegilops tauschii and Hexaploid wheat (Triticum aestivum L.). J Integr Agri 14:1936–1948

    Article  Google Scholar 

  • Kadkhodaie A, Razmjoo J, Zahedi M, Pessarakli M (2014) Selecting sesame genotypes for drought tolerance based on some physiochemical traits. Agron J 106:111–118

    Article  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    Article  CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang L, Mao S, Liu K, Lu Y, Wang J, Wei Y, Zheng Y (2015) Genome-wide association study of 29 morphological traits in Aegilops tauschii. Sci Rep 5:15562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manoranjan K, Dinabandhu M (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57:315–319

    Article  Google Scholar 

  • Marais F, Marais A, McCallum B, Pretorius Z (2009) Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Sci 49:871–879

    Article  CAS  Google Scholar 

  • Mehrabi AA, Pour-Aboughadareh A, Mansouri S, Hosseini A (2020) Genome-wide association analysis of root system architecture features and agronomic traits in durum wheat. Mol Breeding 40:55

    Article  CAS  Google Scholar 

  • Molnar I, Gaspar L, Sarvari E, Dulai S, Hoffmann B, Molnar-Lang M (2004) Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes. Biol Funct Plant 31:1149–1159

    Article  Google Scholar 

  • Naghavi MR, Mardi M, Pirseyedi SM, Kazemi K, Potki P, Ghaffari MR (2007) Comparison of genetic variation among accessions of Aegilops tauschii using AFLP and SSR markers. Genet Resour Crop Ev 54:237–240

    Article  Google Scholar 

  • Naghavi MR, Ranjbar M, Zali A, Aghaei MJ, Mardi M, Pirseyedi SM (2009) Genetic diversity of Aegilops crassa and its relationship with Aegilops tauschii and the D genome of wheat. Cereal Res Commun 37:159–167

    Article  CAS  Google Scholar 

  • Nakano Y, Asada NK (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867

    CAS  Google Scholar 

  • Olivera PD, Rouse MN, Jin Y (2018) Identification of new sources of resistance to wheat stem rust in Aegilops spp. in the tertiary genepool of wheat. Front Plant Sci 9:1719–1726

    Article  PubMed  PubMed Central  Google Scholar 

  • Olson EL, Rouse MN, Pumphrey MO, Bowden RL, Gill BS, Poland JA (2013) Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat. Theor Appl Genet 126:2477–2484

    Article  CAS  PubMed  Google Scholar 

  • Pagariya MC, Devarumath RM, Kawar PG (2012) Biochemical characterization and identification of differentially expressed candidate genes in salt stressed sugarcane. Plant Sci 184:1–13

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, Etminan A, Moghaddam M (2017) Assessment of genetic diversity among Iranian Triticum germplasm using agro-morphological traits and start codon targeted (SCoT) markers. Cereal Res Commun 45:574–586

    Article  Google Scholar 

  • Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, Etminan A, Moghaddam M (2018) Insight into the genetic variability analysis and relationships among some Aegilops and Triticum species, as genome progenitors of bread wheat, using SCoT markers. Plant Biosystem 152:694–703

    Article  Google Scholar 

  • Pour-Aboughadareh A, Etminan A, Abdelrahman M, Siddique KHM, Tran LSP (2020a) Assessment of biochemical and physiological parameters of durum wheat genotypes at the seedling stage during polyethylene glycol-induced water stress. Plant Growth Regul 92:81–93

    Article  CAS  Google Scholar 

  • Pour-Aboughadareh A, Omidi M, Naghavi MR, Etminan A, Mehrabi AA, Poczai P (2020b) Wild relative of wheat respond well to water deficit stress: a comparative study of antioxidant enzyme activities and their encoding gene expression. Agriculture 10:425

    Article  CAS  Google Scholar 

  • Pour-Aboughadareh A, Omidi M, Naghavi MR, Etminan A, Mehrabi AA, Poczai P, Bayat H (2019) Effect of water deficit stress on seedling biomass and physio-chemical characteristics in different species of wheat possessing the D genome. Agronomy 9:522

    Article  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roder M, Korzun V, Wendehake K, Plasche J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sairam RK, Saxena DC (2000) Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J Agron Crop Sci 184:55–61

    Article  CAS  Google Scholar 

  • Soriano JM, Villegas D, Aranzana MJ, García del Moral LF, Royo C (2016) Genetic Structure of Modern Durum Wheat Cultivars and Mediterranean Landraces Matches with Their Agronomic Performance. PLoS ONE 11: e0160983.

  • Souza CC, Oliveira FA, Silva IF, Amorim Neto MS (2000) Evaluation of methods of available water determination and irrigation management in ‘“terra roxa”’ under cotton crop. Rev Bras Eng Agr Amb 4:338–342

    Article  Google Scholar 

  • Suneja Y, Gupta AK, Bains NS (2017) Bread wheat progenitors: Aegilops tauschii (DD genome) and Triticum dicoccoides (AABB genome) reveal differential antioxidative response under water stress. Physiol Mol Biol Plants 23:99–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Slageren MW (1994) Wild Wheats: a Monograph of Aegilops L. and Amblyopyrum (Jaub and Spach) Eig (Poaceae). Wageningen: Wageningen Agricultural University Papers.

  • Yu J, Buckler E (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotech 17(2):155–160

    Article  CAS  PubMed  Google Scholar 

  • Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P (2001) Drought and heat responses in the wild wheat relative roth. Crop Sci 41:1321–1329

    Article  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Etminan.

Additional information

Communicated by M. Molnár-Láng.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshvar, Z., Omidi, M., Etminan, A. et al. Revealing the genetic diversity and population structure in Aegilops crassa and Aegilops cylindrica species using molecular markers and physio-chemical traits. CEREAL RESEARCH COMMUNICATIONS 50, 347–356 (2022). https://doi.org/10.1007/s42976-021-00202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-021-00202-9

Keywords

Navigation