Skip to main content

Advertisement

Log in

Wound dressings coated with silver nanoparticles and essential oil of Labdanum

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Wound healing is one of the major complications in clinical industries. It is delaying due to various factors and organisms. The current study emphasizes on preparing anti-microbial wound fabrics treated with silver nanoparticles, sodium alginate and labdanum oil. The modification of the wound fabrics was done through the dip coating method. The physio-chemical properties of the synthesized silver nanoparticles were analyzed with the following techniques such as FT-IR, XRD, SEM, zeta potential and DLS and the prepared wound fabrics were checked for the impregnation of the silver nanoparticles by SEM analysis, respectively. The synthesized nanoparticles were spherical, stable in nature and around 200 nm in diameter. The developed wound fabrics and the silver nanoparticles were also analyzed for antimicrobial activity and an enhanced antimicrobial activity was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aderibigbe BA, Buyana B (2018) Alginate in wound dressings. Pharmaceutics 10(2):42

    Article  Google Scholar 

  • Ait-Ouazzou A, Lorán S, Bakkali M, Laglaoui A, Rota C, Herrera A, Pagán R, Conchello P (2011) Chemical composition and antimicrobial activity of essential oils of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. J Sci Food Agric 91(14):2643–2651

    Article  CAS  Google Scholar 

  • Amin M, Anwar F, Janjua MRSA, Iqbal MA, Rashid U (2012) Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int J Mol Sci 13(8):9923–9941

    Article  CAS  Google Scholar 

  • Balaji D, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar B, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Coll Surf B 68(1):88–92

    Article  CAS  Google Scholar 

  • Barrajón-Catalán E, Fernández-Arroyo S, Saura D, Guillén E, Fernández-Gutiérrez A, Segura-Carretero A, Micol V (2010) Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells. Food Chem Toxicol 48(8–9):2273–2282

    Article  Google Scholar 

  • Barrajón-Catalán E, Fernández-Arroyo S, Roldán C, Guillén E, Saura D, Segura-Carretero A, Micol V (2011) A systematic study of the polyphenolic composition of aqueous extracts deriving from several Cistus genus species: evolutionary relationship. Phytochem Anal 22(4):303–312

    Article  Google Scholar 

  • Barros L, Dueñas M, Alves CT, Silva S, Henriques M, Santos-Buelga C, Ferreira IC (2013) Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Ind Crops Prod 41:41–45

    Article  CAS  Google Scholar 

  • Bölgen N, Demir D, Yalçın MS, Özdemir S (2020) Development of Hypericum perforatum oil incorporated antimicrobial and antioxidant chitosan cryogel as a wound dressing material. Int J Biol Macromol 161:1581–1590

    Article  Google Scholar 

  • Chen S, Carroll DL (2002) Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2(9):1003–1007

    Article  CAS  Google Scholar 

  • Chifiriuc C, Grumezescu V, Grumezescu AM, Saviuc C, Lazăr V, Andronescu E (2012) Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity. Nanoscale Res Lett 7(1):209

    Article  Google Scholar 

  • Clinical LS Institute (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Stand 26:M7-A7

    Google Scholar 

  • Delgado JA, Serrano JM, López F, Acosta FJ (2001) Heat shock, mass-dependent germination, and seed yield as related components of fitness in Cistus ladanifer. Environ Exp Bot 46(1):11–20

    Article  Google Scholar 

  • Devaraj P, Kumari P, Aarti C, Renganathan A (2013) Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line. J Nanotech. https://doi.org/10.1155/2013/598328

    Article  Google Scholar 

  • Dhivya S, Padma VV, Santhini E (2015) Wound dressings—a review. BioMedicine 5(4):22. https://doi.org/10.7603/s40681-015-0022-9

    Article  Google Scholar 

  • Fathima JB, Pugazhendhi A, Venis R (2017) Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb Pathog 110:245–251

    Article  CAS  Google Scholar 

  • Fernández-Arroyo S, Barrajón-Catalán E, Micol V, Segura-Carretero A, Fernández-Gutiérrez A (2010) High-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight and ion-trap tandem mass spectrometry to identify phenolic compounds from a Cistus ladanifer aqueous extract. Phytochem Anal 21(4):307–313

    Article  Google Scholar 

  • Ferreira S, Santos J, Duarte A, Duarte A, Queiroz J, Domingues F (2012) Screening of antimicrobial activity of Cistus ladanifer and Arbutus unedo extracts. Nat Prod Res 26(16):1558–1560

    Article  CAS  Google Scholar 

  • Fissan H, Ristig S, Kaminski H, Asbach C, Epple M (2014) Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal Methods 6(18):7324–7334

    Article  CAS  Google Scholar 

  • Gray TA, Rhodes S, Atkinson RA, Rothwell K, Wilson P, Dumville JC, Cullum NA (2018) Opportunities for better value wound care: a multiservice, cross-sectional survey of complex wounds and their care in a UK community population. BMJ Open 8(3):e019440

    Article  Google Scholar 

  • Gunasekaran T, Nigusse T, Dhanaraju MD (2011) Silver nanoparticles as real topical bullets for wound healing. J Am Coll Clin Wound Spec 3(4):82–96

    Google Scholar 

  • Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE (2007) Characterization of nanoparticles for therapeutics. Nanomedicine 2(6):789–803. https://doi.org/10.2217/17435889.2.6.789

    Article  CAS  Google Scholar 

  • Jemal K, Sandeep B, Pola S (2017) Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles. J Nanomaterials. https://doi.org/10.1155/2017/4213275

    Article  Google Scholar 

  • Johal MS, Johnson LE (2018) Understanding nanomaterials. CRC Press, Boca Raton. https://doi.org/10.1201/9781315156934

    Book  Google Scholar 

  • Kalashnikova I, Das S, Seal S (2015) Nanomaterials for wound healing: scope and advancement. Nanomedicine 10(16):2593–2612

    Article  CAS  Google Scholar 

  • Kapp S, Santamaria N (2015) Chronic wounds should be one of Australia’s National Health Priority Areas. Aust Health Rev 39(5):600–602

    Article  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y (2007) Antimicrobial effects of silver nanoparticles, nanomedicine: nanotechnology. Biol Med 3(1):95–101

    CAS  Google Scholar 

  • Konigs R, Gulz P (1974) Monoterpenes in essential leaf oil of Cistus-ladaniferus L. Z Pflanzenphysiol 72(3):237–248

    Google Scholar 

  • Krychowiak M, Grinholc M, Banasiuk R, Krauze-Baranowska M, Głód D, Kawiak A, Królicka A (2014) Combination of silver nanoparticles and Drosera binata extract as a possible alternative for antibiotic treatment of burn wound infections caused by resistant Staphylococcus aureus. PLoS ONE 9(12):e115727

    Article  Google Scholar 

  • Kumar M (2000) Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 3(2):234–258

    Google Scholar 

  • Kumar SSD, Rajendran NK, Houreld NN, Abrahamse H (2018) Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int J Biol Macromol 115:165–175

    Article  CAS  Google Scholar 

  • Lin P-C, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32(4):711–726

    Article  Google Scholar 

  • Mahboubi M (2008) Antifungal activity of essential oils from Zataria multiflora, Rosmarinus officinalis, Lavandula stoechas, Artemisia sieberi Besser and Pelargonium graveolens against clinical isolates of Candida albicans. Pharmacol Mag 4:15–18

    Google Scholar 

  • Mahboubi M, Bidgoli FG (2010) Antistaphylococcal activity of Zataria multiflora essential oil and its synergy with vancomycin. Phytomedicine 17(7):548–550

    Article  CAS  Google Scholar 

  • Mahboubi M, Feizabadi M (2008) Antifungal activity of essential oil from Oliveria decumbens Vent and its synergy with amphotricin B. Int J Essent Oil Ther 2(1):26–28

    Google Scholar 

  • Mandal S, Phadtare S, Sastry M (2005) Interfacing biology with nanoparticles. Curr Appl Phys 5(2):118–127

    Article  Google Scholar 

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–1549

    Article  Google Scholar 

  • Mariotti JP, Tomi F, Bernardini A, Costa J, Casanova J (1994) Etude d'huiles essentielles de Cistus ladaniferus L. cultivé en Corse. Rivista Italiana EPPOS, pp 614–620. hal-00449242

  • Mayaud L, Carricajo A, Zhiri A, Aubert G (2008) Comparison of bacteriostatic and bactericidal activity of 13 essential oils against strains with varying sensitivity to antibiotics. Lett Appl Microbiol 47(3):167–173

    Article  CAS  Google Scholar 

  • Mohammed B, Said C, Fouzia FR, Kawtar FB, Zoubida H, Abdelilah O, Mohammed E, Ghizlane E (2019) Chemical composition and antimicrobial activity of the essential oil of Cistus ladanifer var. maculatus Dun. J Microbiol Biotechnol Food Sci 2019:925–930

    Google Scholar 

  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101(2):239–253

    Article  CAS  Google Scholar 

  • Narayanan M, Divya S, Natarajan D, Senthil-Nathan S, Kandasamy S, Chinnathambi A, Alahmadi TA, Pugazhendhi A (2021) Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini L. and assess their possible biological applications. Process Biochem 107:91–99

    Article  CAS  Google Scholar 

  • Norman RE, Gibb M, Dyer A, Prentice J, Yelland S, Cheng Q, Lazzarini PA, Carville K, Innes-Walker K, Finlayson K (2016) Improved wound management at lower cost: a sensible goal for Australia. Int Wound J 13(3):303–316

    Article  Google Scholar 

  • Oves M, Aslam M, Rauf MA, Qayyum S, Qari HA, Khan MS, Alam MZ, Tabrez S, Pugazhendhi A, Ismail IM (2018) Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater Sci Eng C 89:429–443

    Article  CAS  Google Scholar 

  • Pacella R, Tulleners R, Cheng Q, Burkett E, Edwards H, Yelland S, Brain D, Bingley J, Lazzarini P, Warnock J (2018) Solutions to the chronic wounds problem in Australia: a call to action. Australian Centre for Health Services Innovation (AusHSI), Brisbane, pp 84–98

    Google Scholar 

  • Patri AK, Dobrovolskaia MA, Stern ST, McNeil SE (2006) Preclinical characterization of engineered nanoparticles intended for cancer therapeutics. Nanotechnology for cancer therapy. CRC Press, Boca Raton, pp 120–152

    Google Scholar 

  • Pawley J (1997) The development of field-emission scanning electron microscopy for imaging biological surfaces. Scanning-New York and Baden Baden Then Mahwah 19:324–336

    CAS  Google Scholar 

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanoparticles. https://doi.org/10.1155/2013/431218

    Article  Google Scholar 

  • Radulescu M, Andronescu E, Dolete G, Popescu RC, Fufă O, Chifiriuc MC, Mogoantă L, Bălşeanu T-A, Mogoşanu GD, Grumezescu AM (2016) Silver nanocoatings for reducing the exogenous microbial colonization of wound dressings. Materials 9(5):345

    Article  Google Scholar 

  • Ramalho PS, de Freitas VA, Macedo A, Silva G, Silva AM (1999) Volatile components of Cistus ladanifer leaves. Flavour Fragr J 14(5):300–302

    Article  CAS  Google Scholar 

  • Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine. Elsevier, Amsterdam

    Google Scholar 

  • Roy K, Sarkar C, Ghosh C (2015) Plant-mediated synthesis of silver nanoparticles using parsley (Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study. Appl Nanosci 5(8):945–951

    Article  CAS  Google Scholar 

  • Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL (2011) Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem 83(12):4453–4488

    Article  CAS  Google Scholar 

  • Sezer AD, Cevher E (2011) Biopolymers as wound healing materials: challenges and new strategies. Biomater Appl Nanomed. https://doi.org/10.5772/25177

    Article  Google Scholar 

  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli, nanomedicine: nanotechnology. Biol Med 3(2):168–171

    CAS  Google Scholar 

  • Sharififar F, Moshafi M, Mansouri S, Khodashenas M, Khoshnoodi M (2007) In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food Control 18(7):800–805

    Article  CAS  Google Scholar 

  • Sharififar F, Mirtajadini M, Azampour MJ, Zamani E (2012) Essential oil and methanolic extract of Zataria multiflora Boiss with anticholinesterase effect. Pak J Biol Sci 15(1):49

    Article  Google Scholar 

  • Sofi HS, Akram T, Tamboli AH, Majeed A, Shabir N, Sheikh FA (2019) Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications. Int J Pharmaceut 569:118590

    Article  CAS  Google Scholar 

  • Timurkaynak F, Can F, Azap ÖK, Demirbilek M, Arslan H, Karaman SÖ (2006) In vitro activities of non-traditional antimicrobials alone or in combination against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii isolated from intensive care units. Int J Antimicrob Agents 27(3):224–228

    Article  CAS  Google Scholar 

  • Tomaszewska E, Soliwoda K, Kadziola K, Tkacz-Szczesna B, Celichowski G, Cichomski M, Szmaja W, Grobelny J (2013) Detection limits of DLS and UV-vis spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomater. https://doi.org/10.1155/2013/313081

    Article  Google Scholar 

  • Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci Part B 49(12):832–864

    Article  CAS  Google Scholar 

  • Vasile BS, Birca AC, Musat MC, Holban AM (2020) Wound dressings coated with silver nanoparticles and essential oils for the management of wound infections. Materials 13(7):1682

    Article  CAS  Google Scholar 

  • Wang Z (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. ACS Publ. https://doi.org/10.1021/jp993593c

    Article  Google Scholar 

  • Weller CD, Evans S (2014) Monitoring patterns and quality of care for people diagnosed with venous leg ulcers: the argument for a national venous leg ulcer registry. Wound Pract Res 22(2):68

    Google Scholar 

  • Wells A, Nuschke A, Yates CC (2016) Skin tissue repair: matrix microenvironmental influences. Matrix Biol 49:25–36

    Article  CAS  Google Scholar 

  • Weyerstahl P, Marschall H, Weirauch M, Thefeld K, Surburg H (1998) Constituents of commercial Labdanum oil. Flavour Fragr J 13(5):295–318

    Article  CAS  Google Scholar 

  • Yadav P, Yadav H, Shah VG, Shah G, Dhaka G (2015) Biomedical biopolymers, their origin and evolution in biomedical sciences: a systematic review. J Clin Diagn Res 9(9):ZE21

    CAS  Google Scholar 

  • Zomorodian K, Ghadiri P, Saharkhiz MJ, Moein MR, Mehriar P, Bahrani F, Golzar T, Pakshir K, Fani MM (2015) Antimicrobial activity of seven essential oils from Iranian aromatic plants against common causes of oral infections. Jundishapur J Microbiol 8(2):e17766. https://doi.org/10.5812/jjm.17766

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Taif University Researchers Supporting Project number (TURSP-2020/127), Taif University, Taif, Saudi Arabia. The authors thank King Khalid University for collaboration and support. The authors would like to thank IGPRED (http://www.igpred.com) for providing insight and expertise on the research topic and for the assistance that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathirvel Brindhadevi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brindhadevi, K., Elesawy, B.H., Elfasakhany, A. et al. Wound dressings coated with silver nanoparticles and essential oil of Labdanum. Appl Nanosci 13, 1345–1354 (2023). https://doi.org/10.1007/s13204-021-02040-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-02040-x

Keywords

Navigation