Skip to main content
Log in

Numerical Analysis of Volterra Integro-differential Equations with Caputo Fractional Derivative

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

This article deals with a fully discretized numerical scheme for solving fractional order Volterra integro-differential equations involving Caputo fractional derivative. Such problem exhibits a mild singularity at the initial time \(t=0\). To approximate the solution, the classical L1 scheme is introduced on a uniform mesh. For the integral part, the composite trapezoidal approximation is used. It is shown that the approximate solution converges to the exact solution. The error analysis is carried out. Due to presence of weak singularity at the initial time, we obtain the rate of convergence is of order \(O(\tau )\) on any subdomain away from the origin whereas it is of order \(O(\tau ^\alpha )\) over the entire domain. Finally, we present a couple of examples to show the efficiency and the accuracy of the numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad B, Nieto JJ (2011) Riemann–Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Bound Value Probl 36:2011. https://doi.org/10.1186/1687-2770-2011-36

    Article  MathSciNet  MATH  Google Scholar 

  • Ali MF, Sharma LN, Mishra Mishra VN (2015) Dirichlet average of generalized Miller–Ross function and fractional derivative. Turk J Anal Number Theory 3(1):30–32. https://doi.org/10.12691/tjant-3-1-7

    Article  Google Scholar 

  • Alkan S, Hatipoglu V (2017) Approximate solutions of Volterra–Fredholm integro-differential equations of fractional order. Tbilisi Math J 10(2):1–13

    Article  MathSciNet  Google Scholar 

  • Assari P, Dehghan M (2019) A meshless local Galerkin method for solving Volterra integral equations deduced from nonlinear fractional differential equations using the moving least squares technique. Appl Numer Math 143:276–299

    Article  MathSciNet  Google Scholar 

  • Assari P, Adibi H, Dehghan M (2013) A numerical method for solving linear integral equations of the second kind on the non-rectangular domains based on the meshless method. Appl Math Model 37(22):9269–9294

    Article  MathSciNet  Google Scholar 

  • Baglan I, Kanca F, Mishra VN (2018) Determination of an unknown heat source from integral overdetermination condition. Iran J Sci Technol Trans A Sci 42:1373–1382. https://doi.org/10.1007/s40995-017-0454-z

    Article  MathSciNet  MATH  Google Scholar 

  • Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27(3):201–210

    Article  Google Scholar 

  • Das P, Rana S, Ramos H (2019a) Homotopy perturbation method for solving Caputo-type fractional-order Volterra–Fredholm integro-differential equations. Comp Math Methods. https://doi.org/10.1002/cmm4.1047

    Article  MathSciNet  Google Scholar 

  • Das P, Rana S, Ramos H (2019b) A perturbation based approach for solving fractional order Volterra–Fredholm integro differential equations and its convergence analysis. Int J Comput Math 97(10):1994–2014. https://doi.org/10.1080/00207160.2019.1673892

    Article  MathSciNet  Google Scholar 

  • Deepmala V, Mishra N, Marasi HR, Shabanian H, Nosraty M (2017) Solution of Voltra–Fredholm integro-differential equations using Chebyshev collocation method. Glob J Technol Optim 8(1):66. https://doi.org/10.4172/2229-8711.1000210

    Article  Google Scholar 

  • Diethelm K (2010) The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, vol 2004. Springer, Berlin

    Book  Google Scholar 

  • Dubey R, Deepmala H, Mishra VN (2020) Higher-order symmetric duality in nondifferentiable multiobjective fractional programming problem over cone constraints. Stat Optim Inf Comput 8(1):187–205. https://doi.org/10.19139/soic-2310-5070-601

    Article  MathSciNet  Google Scholar 

  • Fellah ZEA, Depollier C, Fellah M (2002) Application of fractional calculus to the sound waves propagation in rigid porous materials: validation via ultrasonic measurements. Acta Acust United Acust 88(1):34–39

    Google Scholar 

  • Gordji ME, Baghani H, Baghani O (2011) On existence and uniqueness of solutions of a nonlinear integral equation. J Appl Math. https://doi.org/10.1155/2011/743923

    Article  MathSciNet  MATH  Google Scholar 

  • Gracia JL, O’Riordan E, Stynes M (2018) Convergence in positive time for a finite difference method applied to a fractional convection–diffusion problem. Comput Methods Appl Math 18(1):33–42

    Article  MathSciNet  Google Scholar 

  • Guo D (2001) Existence of solutions for nth-order integro-differential equations in Banach spaces. Comput Math Appl 41(5–6):597–606

    Article  MathSciNet  Google Scholar 

  • Hamoud AA, Ghadle KP, Issa MB, Giniswamy H (2018) Existence and uniqueness theorems for fractional Volterra–Fredholm integro-differential equations. Int J Appl Math 31(3):333–348

    Article  MathSciNet  Google Scholar 

  • Jhinga A, Daftardar-Gejji V (2019) A new numerical method for solving fractional delay differential equations. Comput Appl Math. https://doi.org/10.1007/s40314-019-0951-0

    Article  MathSciNet  MATH  Google Scholar 

  • Kanca F, Mishra VN (2019) Identification problem of a leading coefficient to the time derivative of parabolic equation with nonlocal boundary conditions. Iran J Sci Technol Trans A Scie 43(3):1227–1233. https://doi.org/10.1007/s40995-018-0587-8

    Article  MathSciNet  Google Scholar 

  • Kulish VV, Lage JL (2002) Application of fractional calculus to fluid mechanics. J Fluids Eng 124(3):803–806

    Article  Google Scholar 

  • Marti TJ (1967) On integro-differential equations in Banach spaces. Pac J Math 20(1):99–108

    Article  MathSciNet  Google Scholar 

  • Mishra VN, Khatri K, Mishra LN, Deepmala S (2013a) Inverse result in simultaneous approximation by Baskakov–Durrmeyer–Stancu operators. J Inequal Appl 1:1–11. https://doi.org/10.1186/1029-242X-2013-586

    Article  MathSciNet  MATH  Google Scholar 

  • Mishra VN, Khan HH, Khatri K, Mishra LN (2013b) Hypergeometric representation for Baskakov–Durrmeyer–Stancu type operators. Bull Math Anal Appl 5(3):18–26

    MathSciNet  MATH  Google Scholar 

  • Mittal R, Nigam R (2008) Solution of fractional integro-differential equations by Adomian decomposition method. Int J Appl Math Mech 4(2):87–94

    Google Scholar 

  • Momani S, Noor MA (2006) Numerical methods for fourth-order fractional integro-differential equations. Appl Math Comput 182(1):754–760

    MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of their Applications Mathematics in Science and Engineering, vol 198. Academic Press, San Diego

    MATH  Google Scholar 

  • Rawashdeh EA (2006) Numerical solution of fractional integro-differential equations by collocation method. Appl Math Comput 176(1):1–6

    MathSciNet  MATH  Google Scholar 

  • Sales SMSN, Baghani O (2018) On multi-singular integral equations involving n weakly singular kernels. Filomat 32(4):1323–1333

    Article  MathSciNet  Google Scholar 

  • Santra S, Mohapatra J (2020) Analysis of the L1 scheme for a time fractional parabolic–elliptic problem involving weak singularity. Math Methods Appl Sci 44(2):1529–1541. https://doi.org/10.1002/mma.6850

    Article  MathSciNet  MATH  Google Scholar 

  • Shahmorad S (2005) Numerical solution of the general form linear Fredholm–Volterra integro-differential equations by the Tau method with an error estimation. Appl Math Comput 167(2):1418–1429

    MathSciNet  MATH  Google Scholar 

  • Soczkiewicz E (2002) Application of fractional calculus in the theory of viscoelasticity. Mol. Quantum Acoust. 23:397–404

    Google Scholar 

  • Stynes M, O’Riordan E, Gracia JL (2017) Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J Numer Anal 55(2):1057–1079

    Article  MathSciNet  Google Scholar 

  • Suárez JI, Vinagre BM, Calderón AJ, Monje CA, Chen YQ (2003) Using fractional calculus for lateral and longitudinal control of autonomous vehicles. Lecture notes in computer science. Springer, Berlin, pp 337–348

    Google Scholar 

  • Wang T, Qin M, Zhang Z (2020) The Puiseux expansion and numerical integration to nonlinear weakly singular Volterra integral equations of the second kind. J Sci Comput 82(2):1–28

    Article  MathSciNet  Google Scholar 

  • Wongyat T, Sintunavarat W (2017) The existence and uniqueness of the solution for nonlinear Fredholm and Volterra integral equations together with nonlinear fractional differential equations via w-distances. Adv Differ Equ 1:211. https://doi.org/10.1186/s13662-017-1267-2

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang P, Hao X (2018) Existence and uniqueness of solutions for a class of nonlinear integro-differential equations on unbounded domains in Banach spaces. Adv Differ Equ 1:247. https://doi.org/10.1186/s13662-018-1681-0

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jugal Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santra, S., Mohapatra, J. Numerical Analysis of Volterra Integro-differential Equations with Caputo Fractional Derivative. Iran J Sci Technol Trans Sci 45, 1815–1824 (2021). https://doi.org/10.1007/s40995-021-01180-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-021-01180-7

Keywords

Mathematics Subject Classification

Navigation