Skip to main content
Log in

Towards reconfigurable and flexible multirotors

A literature survey and discussion on potential challenges

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Reconfigurable multirotors (RMs) with flexible frames and integrated mechanical compliance are increasingly explored to develop multifunctional aerial robots with high power-to-weight ratios. In this paper, we review the state-of-the-art research on RMs and classify them into three broad categories as tiltrotors, multimodal and foldable RMs. The RMs with the ability to arbitrarily orient their thrust by employing tilting rotors are classified as tiltrotors, the multirotors with multi modal locomotion capabilities by transforming the chassis into land/water propulsion systems are classified as multimodal RMs, and those which can alter the size of the chassis are labelled as foldable RMs. Existing platforms are analyzed from three different perspectives—mechanical design, challenges of low-level control and high level motion planning techniques. Finally, we identify the critical parameters for design optimization, and discuss the issues associated with developing a common control and motion planning algorithm that can leverage any RM’s features to demonstrate successful autonomous missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(\{\mathbf {i}_1, \mathbf {i}_2, \mathbf {i}_3\}\) :

Inertial frame

\(\{\mathbf {b}_1,\mathbf {b}_2,\mathbf {b}_3\}\) :

Body-fixed frame, b

\(\varvec{x} \in {\mathbb {R}}^3\) :

Position of vehicle in inertial frame

\(\varvec{v} \in {\mathbb {R}}^3\) :

Velocity of vehicle in inertial frame

\(\varvec{R} \in \mathsf {SO(3)}\) :

Rotation matrix

\(\varvec{\varOmega } \in {\mathbb {R}}^3\) :

Angular velocity in body frame

\({}_bf \in {\mathbb {R}}\) :

Total thrust input in \(b_3\) direction

\({}_b\varvec{M} \in {\mathbb {R}}^3\) :

Moment input in body frame

\(\delta _i\) :

\(i^{\mathrm{th}}\) Rotor’s spin velocity

\(\varvec{N} \in {\mathbb {R}}^n\) :

Vector of squared rotor spin velocities

\(k_i \in {\mathbb {R}}\) :

Constant to calculate torque generated by \(i\mathrm{th}\) motor

\(\sigma \in {\mathbb {R}}\) :

Event trigger

\(\alpha _i \in {\mathsf {S}}^1\) :

\(i^{\mathrm{th}}\) Rotor tilt angle

\(\beta _i \in {\mathsf {S}}^1\) :

\(i^\mathrm{th}\) Arm folding angle

\(A \in {\mathbb {R}}^{3\times 3}\) :

Control allocation matrix

\(A^g \in {\mathbb {R}}^{3\times 3}\) :

Control allocation matrix in ground mode

LLFC:

Low-level flight controller

HLMP:

High-level motion plannning

MoCap:

Indoor motion capture system

References

  • Ames, A.D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., Tabuada, P.: Control barrier functions: theory and applications. In: 2019 18th European Control Conference, IEEE, pp 3420–3431 (2019)

  • Anderson, R.B., Marshall, J.A., L’Afflitto, A: Constrained robust model reference adaptive control of a tilt-rotor quadcopter pulling an unmodeled cart. IEEE Trans. Aerosp. Electron. Syst. 57(1), 39–54 (2021)

    Article  Google Scholar 

  • Araki. B., Strang. J., Pohorecky. S., Qiu, C., Naegeli, T., Rus, D.: Multi-robot path planning for a swarm of robots that can both fly and drive. In: International Conference on Robotics and Automation, IEEE, pp 5575–5582 (2017)

  • Augugliaro, F., D’Andrea, R.: Admittance control for physical human-quadrocopter interaction. In: European Control Conference, IEEE, pp 1805–1810 (2013)

  • Beyer, E., Costello, M.: Performance of a hopping rotochute. Int. J. Micro Air Veh. 1(2), 121–137 (2009)

    Article  Google Scholar 

  • Bodie, K., Taylor, Z., Kamel, M., Siegwart, R.: Towards efficient full pose omnidirectionality with overactuated mavs. In: International Symposium on Experimental Robotics, Springer, pp 85–95 (2018)

  • Bodie, K., Brunner, M., Pantic, M., Walser, S., Pfändler, P., Angst, U., Siegwart, R., Nieto, J.: Active interaction force control for contact-based inspection with a fully actuated aerial vehicle. IEEE Trans. Robot. 37(3), 709–722 (2021)

  • Bouman, A., Nadan, P., Anderson, M., Pastor, D., Izraelevitz, J., Burdick, J., Kennedy, B.: Design and autonomous stabilization of a ballistically-launched multirotor. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp 8511–8517 (2020)

  • Brescianini, D., D’Andrea, R.: An omni-directional multirotor vehicle. Mechatronics 55, 76–93 (2018)

    Article  Google Scholar 

  • Bucki, N., Mueller, M.W.: (2019) Design and control of a passively morphing quadcopter. In: International Conference on Robotics and Automation, IEEE, pp 9116–9122

  • Bucki, N., Tang, J., Mueller, MW.: Design and control of a midair reconfigurable quadcopter using unactuated hinges (2021). arXiv preprint arXiv:210316632

  • Chen, Y., Helbling, E.F., Gravish, N., Ma, K., Wood, R.J.: Hybrid aerial and aquatic locomotion in an at-scale robotic insect. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp 331–338 (2015)

  • Chui, F., Dicker, G., Sharf, I.: Dynamics of a quadrotor undergoing impact with a wall. In: International Conference on Unmanned Aircraft Systems, IEEE, pp 717–726 (2016)

  • Chung, S.J., Paranjape, A.A., Dames, P., Shen, S., Kumar, V.: A survey on aerial swarm robotics. IEEE Trans. Robot. 34(4), 837–855 (2018)

    Article  Google Scholar 

  • Cutler, M., Ure, NK., Michini, B., How, J.: Comparison of fixed and variable pitch actuators for agile quadrotors. In: AIAA guidance, navigation, and control conference, p 6406 (2011)

  • David, N.B., Zarrouk, D.: Design and analysis of fcstar, a hybrid flying and climbing sprawl tuned robot. IEEE Robot. Automat. Lett. 6(4), 6188–6195 (2021)

  • Derrouaoui, S., Bouzid, Y., Guiatni, M., Dib, I., Moudjari, N.: Design and modeling of unconventional quadrotors. In: 2020 28th Mediterranean Conference on Control and Automation, IEEE, pp 721–726 (2020)

  • Desbiez, A., Expert, F., Boyron, M., Diperi, J., Viollet, S., Ruffier, F.: X-morf: a crash-separable quadrotor that morfs its x-geometry in flight. In: Workshop on Research, pp. 222–227. Education and Development of Unmanned Aerial Systems, IEEE (2017)

  • Di Luca, M., Mintchev, S., Heitz, G., Noca, F., Floreano, D.: Bioinspired morphing wings for extended flight envelope and roll control of small drones. Interface Focus 7(1), 20160092 (2017)

    Article  Google Scholar 

  • Dobrzynski, M.K., Pericet-Camara, R., Floreano, D.: Contactless deflection sensor for soft robots. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp 1913–1918 (2011)

  • Drews, PL., Neto, AA., Campos, MF.: Hybrid unmanned aerial underwater vehicle: Modeling and simulation. In: International Conference on Intelligent Robots and Systems, IEEE, pp 4637–4642 (2014)

  • Elkhatib, O.: Control allocation of a tilting rotor hexacopter. B.S. thesis, ETH Zurich (2017)

  • Fabris, A., Kleber, K., Falanga, D., Scaramuzza, D.: Geometry-aware compensation scheme for morphing drones (2020). arXiv preprint arXiv:200303929

  • Falanga, D., Foehn, P., Lu, P., Scaramuzza, D.: Pampc: Perception-aware model predictive control for quadrotors. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp 1–8 (2018a)

  • Falanga, D., Kleber, K., Mintchev, S., Floreano, D., Scaramuzza, D.: The foldable drone: A morphing quadrotor that can squeeze and fly. Robot. Automat. Lett. 4(2), 209–216 (2018b)

    Article  Google Scholar 

  • Fresk, E., Nikolakopoulos, G.: Full quaternion based attitude control for a quadrotor. In: European Control Conference, IEEE, pp 3864–3869 (2013)

  • Goecks, V.G., Leal, P.B., White, T., Valasek, J., Hartl, D.J.: Control of morphing wing shapes with deep reinforcement learning. In: 2018 AIAA Information Systems-AIAA Infotech@ Aerospace, AIAA, p 2139 (2018)

  • Grant, D.T., Abdulrahim, M., Lind, R.: Design and analysis of biomimetic joints for morphing of micro air vehicles. Bioinspirat. Biomimet. 5(4), 045007 (2010)

    Article  Google Scholar 

  • Hamandi, M., Usai, F., Sablé, Q., Staub, N., Tognon, M., Franchi, A.: Survey on aerial multirotor design: a taxonomy based on input allocation. HAL archives (2020). https://hal.archives-ouvertes.fr/hal-02433405/

  • Hedayati, H., Suzuki, R., Leithinger, D., Szafir, D.: Pufferbot: Actuated expandable structures for aerial robots. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1338–1343 (2020) https://doi.org/10.1109/IROS45743.2020.9341088

  • Isidori, A.: Nonlinear control systems design 1989: selected Papers from the IFAC Symposium, Capri, Italy, 14–16 June 1989. Elsevier (2014)

  • Jeong, S.H., Jung, S.: Novel design and position control of an omni-directional flying automobile (omni-flymobile). In: International Conference on Control, pp. 2480–2484. Automation and Systems, IEEE (2010)

  • Jiang, G., Voyles, R.: Hexrotor uav platform enabling dextrous interaction with structures-flight test. In: 2013 IEEE international symposium on safety, security, and rescue robotics (SSRR), IEEE, pp 1–6 (2013)

  • Kalantari, A., Spenko, M.: Modeling and performance assessment of the hytaq, a hybrid terrestrial/aerial quadrotor. IEEE Trans. Robot. 30(5), 1278–1285 (2014)

    Article  Google Scholar 

  • Kamel, M., Alexis, K., Achtelik, M., Siegwart, R.: Fast nonlinear model predictive control for multicopter attitude tracking on so (3). In: Conference on Control Applications, IEEE, pp 1160–1166 (2015)

  • Kamel, M., Verling, S., Elkhatib, O., Sprecher, C., Wulkop, P., Taylor, Z., Siegwart, R., Gilitschenski, I.: The voliro omniorientational hexacopter: an agile and maneuverable tiltable-rotor aerial vehicle. IEEE Robot. Automat. Mag. 25(4), 34–44 (2018)

    Article  Google Scholar 

  • Kaufman, E., Caldwell, K., Lee, D., Lee, T.: Design and development of a free-floating hexrotor uav for 6-dof maneuvers. In: Aerospace Conference, IEEE, pp 1–10 (2014)

  • Klaptocz, A., Briod, A., Daler L., Zufferey, J.C., Floreano, D.: Euler spring collision protection for flying robots. In: International Conference on Intelligent Robots and Systems, IEEE, pp 1886–1892 (2013)

  • Kornatowski, P.M., Mintchev, S., Floreano, D.: An origami-inspired cargo drone. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp 6855–6862 (2017)

  • Kotay, K., Rus, D., Vona, M., McGray, C.: The self-reconfiguring robotic molecule. In: Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), IEEE, vol 1, pp 424–431 (1998)

  • Larrabee, E.E.: The screw propeller. Sci. Am. 243(1), 134–149 (1980)

    Google Scholar 

  • Lee, T., Leok, M., McClamroch, N.H.: Geometric tracking control of a quadrotor uav on se (3). In: Conference on Decision and Control, IEEE, pp 5420–5425 (2010)

  • Lei, Y., Ji, Y., Wang, C., Bai, Y., Xu, Z.: Aerodynamic design on the non-planar rotor system of a multi-rotor flying robot (mfr). In: 2017 IEEE 3rd International Symposium in Robotics and Manufacturing Automation (ROMA), IEEE, pp 1–5 (2017)

  • Li, D., Zhao, S., Da Ronch, A., Xiang, J., Drofelnik, J., Li, Y., Zhang, L., Wu, Y., Kintscher, M., Monner, H.P., et al.: A review of modelling and analysis of morphing wings. Prog. Aerosp. Sci. 100, 46–62 (2018)

    Article  Google Scholar 

  • Liu, S., Watterson, M., Mohta, K., Sun, K., Bhattacharya, S., Taylor, C.J., Kumar, V.: Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-d complex environments. IEEE Robot. Automat. Lett. 2(3), 1688–1695 (2017)

    Article  Google Scholar 

  • Liu, Z., Karydis, K.: Toward impact-resilient quadrotor design, collision characterization and recovery control to sustain flight after collisions (2020). arXiv preprint arXiv:201102061

  • Long, Y., Cappelleri, D.J.: Linear control design, allocation, and implementation for the omnicopter mav. In: International Conference on Robotics and Automation, IEEE, pp 289–294 (2013)

  • Lu, Z., Karydis, K.: Optimal steering of stochastic mobile robots that undergo collisions with their environment. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, pp 668–675 (2019)

  • Lu, Z., Liu, Z., Correa, G.J., Karydis, K.: Motion planning for collision-resilient mobile robots in obstacle-cluttered unknown environments with risk reward trade-offs. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 7064–7070 (2020). https://doi.org/10.1109/IROS45743.2020.9341449

  • Maia, M.M., Mercado, D.A., Diez, F.J.: Design and implementation of multirotor aerial-underwater vehicles with experimental results. In: International Conference on Intelligent Robots and Systems, IEEE, pp 961–966 (2017)

  • Mayhew, C.G., Sanfelice, R.G., Teel, A.R.: Quaternion-based hybrid control for robust global attitude tracking. IEEE Trans. Autom. Control 56(11), 2555–2566 (2011)

    Article  MathSciNet  Google Scholar 

  • Meiri, N., Zarrouk, D.: Flying star, a hybrid crawling and flying sprawl tuned robot. In: International Conference on Robotics and Automation, IEEE, pp 5302–5308 (2019)

  • Mellinger D, Kumar V Minimum snap trajectory generation and control for quadrotors. In: International Conference on Robotics and Automation, IEEE, pp 2520–2525 (2011)

  • Mintchev, S., Floreano, D.: Adaptive morphology: a design principle for multimodal and multifunctional robots. IEEE Robot. Automat. Mag. 23(3), 42–54 (2016)

    Article  Google Scholar 

  • Mintchev, S., Floreano, D.: A multi-modal hovering and terrestrial robot with adaptive morphology. In: Proceedings of International Symposium on Aerial Robotics (2018)

  • Mintchev, S., Daler, L., L’Eplattenier, G., Saint-Raymond, L., Floreano, D.: Foldable and self-deployable pocket sized quadrotor. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp 2190–2195 (2015)

  • Mintchev, S., de Rivaz, S., Floreano, D.: Insect-inspired mechanical resilience for multicopters. IEEE Robot. Automat. Lett. 2(3), 1248–1255 (2017)

    Article  Google Scholar 

  • Mishra, S., Zhang, W.: A disturbance observer approach with online q-filter tuning for position control of quadcopters. In: 2017 American Control Conference, IEEE, pp 3593–3598 (2017)

  • Mishra, S., Yang, D., Thalman, C., Polygerinos, P., Zhang, W.: Design and control of a hexacopter with soft grasper for autonomous object detection and grasping. In: Dynamic Systems and Control Conference, ASME (2018)

  • Mishra, S., Patnaik, K., Garrard, Y., Chase, Z., Ploughe, M., Zhang, W.: Ground trajectory control of an unmanned aerial-ground vehicle using thrust vectoring for precise grasping. In: 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, IEEE, pp 1270–1275 (2020)

  • Mohta, K., Turpin, M., Kushleyev, A., Mellinger, D., Michael, N., Kumar, V.: Quadcloud: a rapid response force with quadrotor teams. In: Experimental Robotics, Springer, pp 577–590 (2016)

  • Mote, M., Afman, J.P., Feron, E.: Robotic trajectory planning through collisional interaction. In: 2017 IEEE 56th Annual Conference on Decision and Control, IEEE, pp 1144–1149 (2017)

  • Mote, M., Egerstedt, M., Feron, E., Bylard, A., Pavone, M.: Collision-inclusive trajectory optimization for free-flying spacecraft. J Guidance Control Dyn. 43(7), 1247–1258 (2020)

    Article  Google Scholar 

  • Mulgaonkar, Y. et al.: The flying monkey: a mesoscale robot that can run, fly, and grasp. In: International Conference on Robotics and Automation, IEEE, pp 4672–4679 (2016)

  • Murphy, R.R., Steimle, E., Griffin, C., Cullins, C., Hall, M., Pratt, K.: Cooperative use of unmanned sea surface and micro aerial vehicles at hurricane wilma. J. Field Robot. 25(3), 164–180 (2008)

    Article  Google Scholar 

  • Myeong, W., Myung, H.: Development of a wall-climbing drone capable of vertical soft landing using a tilt-rotor mechanism. IEEE Access 7, 4868–4879 (2018)

    Article  Google Scholar 

  • Naldi, R., Forte, F., Marconi, L.: A class of modular aerial robots. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference, IEEE, pp 3584–3589 (2011)

  • Nixie (2019) Drone mounted water sampling and sensor system. https://www.nixiedip.com/. Last Accessed 08/15/2019

  • Oung, R., D’Andrea, R.: The distributed flight array. Mechatronics 21(6), 908–917 (2011)

    Article  Google Scholar 

  • Page, J.R, Pounds, P.E.: The quadroller: Modeling of a uav/ugv hybrid q.uadrotor. In: International Conference on Intelligent Robots and Systems, IEEE, pp 4834–4841(2014)

  • Papachristos, C., Alexis, K., Tzes, A.: Design and experimental attitude control of an unmanned tilt-rotor aerial vehicle. In: 2011 15th International Conference on Advanced Robotics, IEEE, pp 465–470 (2011)

  • Park, S., Lee, J., Ahn, J., Kim, M., Her, J., Yang, G.H., Lee, D.: Odar: Aerial manipulation platform enabling omnidirectional wrench generation. IEEE/ASME Trans Mechatron. 23(4), 1907–1918 (2018)

    Article  Google Scholar 

  • Pastor, D., Izraelevitz, J., Nadan, P., Bouman, A., Burdick, J., Kennedy, B.: Design of a ballistically-launched foldable multirotor. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 5212–5218. (2019) https://doi.org/10.1109/IROS40897.2019.8968549

  • Patnaik, K., Mishra, S., Sorkhabadi, S.M., Zhang, W.: Design and control of squeeze: a spring-augmented quadrotor for interactions with the environment to squeeze and fly. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp 331–338 (2020)

  • Patnaik, K., Mishra, S., Chase, Z., Zhang, W.: Collision recovery control of a foldable quadrotor. (2021). arXiv preprint arXiv:210512273

  • Paulos, J., Caraher, B., Yim, M.: Emulating a fully actuated aerial vehicle using two actuators. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp 7011–7016 (2018)

  • Potter, N.: A mars helicopter preps for launch: the first drone to fly on another planet will hitch a ride on nasa’s perseverance rover-[news]. IEEE Spectrum 57(7), 06–07 (2020)

    Article  Google Scholar 

  • Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear h\(\infty\) control structure for a quadrotor helicopter. Automatica 46(1), 29–39 (2010)

    Article  MathSciNet  Google Scholar 

  • Rajappa, S., Ryll, M., Bülthoff, HH., Franchi, A.: Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers. In: 2015 IEEE international conference on robotics and automation (ICRA), IEEE, pp 4006–4013 (2015)

  • Rashad, R., Goerres, J., Aarts, R.G., Engelen, J.B., Stramigioli, S.: Fully actuated multirotor uavs: a literature review. IEEE Robot. Automat. Mag. 27(3), 97–107 (2020)

  • Ribeiro, M., Ferreira, AS., Gonçalves, P., Galante, J., de Sousa, JB.: Quadcopter platforms for water sampling and sensor deployment. In: OCEANS 2016 MTS/IEEE Monterey, IEEE, pp 1–5 (2016)

  • Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Robotics Research, Springer, pp 649–666 (2016)

  • Riviere, V., Manecy, A., Viollet, S.: Agile robotic fliers: a morphing-based approach. Soft Robot. 5(5), 541–553 (2018)

    Article  Google Scholar 

  • Ruggiero, F., Lippiello, V., Ollero, A.: Aerial manipulation: a literature review. IEEE Robot. Automat. Lett. 3(3), 1957–1964 (2018)

    Article  Google Scholar 

  • Rus, D.: Self-reconfiguring robots. IEEE Intell. Syst Their Appl. 13(4), 2–4 (1998)

    Article  Google Scholar 

  • Ryll, M., Bülthoff, H.H., Giordano, P.R.: First flight tests for a quadrotor uav with tilting propellers. In: International Conference on Robotics and Automation, IEEE, pp 295–302 (2013)

  • Ryll, M., Bülthoff, H.H., Giordano, P.R.: A novel overactuated quadrotor unmanned aerial vehicle: Modeling, control, and experimental validation. IEEE Trans. Control Syst. Technol. 23(2), 540–556 (2014)

    Article  Google Scholar 

  • Schiffner, I., Vo, H.D., Bhagavatula, P.S., Srinivasan, M.V.: Minding the gap: in-flight body awareness in birds. Front. Zool. 11(1), 64 (2014)

    Article  Google Scholar 

  • Sharif, A., Choi, S., Roth, H.: A new algorithm for autonomous outdoor navigation of robots that can fly and drive. In: Proceedings of the International Conference on Mechatronics and Robotics Engineering, ACM, pp 141–145 (2019)

  • Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M.: Multigait soft robot. Proc. Natl. Acad. Sci. 108(51), 20400–20403 (2011)

    Article  Google Scholar 

  • Shu, J., Chirarattananon, P.: A quadrotor with an origami-inspired protective mechanism. IEEE Robot. Automat. Lett. 4(4), 3820–3827 (2019)

    Article  Google Scholar 

  • Siddall, R., Ortega Ancel, A., Kovač, M.: Wind and water tunnel testing of a morphing aquatic micro air vehicle. Interface Focus 7(1), 20160085 (2017)

    Article  Google Scholar 

  • Spasojevic, I., Murali, V., Karaman, S.: Perception-aware time optimal path parameterization for quadrotors. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp 3213–3219 (2020)

  • Tan, YH., Chen, BM.: Design of a morphable multirotor aerial-aquatic vehicle. In: OCEANS 2019 MTS/IEEE SEATTLE, IEEE, pp 1–8 (2019)

  • Tan, Y.H., Chen, B.M.: Thruster allocation and mapping of aerial and aquatic modes for a morphable multimodal quadrotor. IEEE/ASME Trans. Mechatron. 25(4), 2065–2074 (2020)

    Article  Google Scholar 

  • Tang, S., Kumar, V.: Autonomous flight. Annu. Rev. Control Robot. Auton. Syst. 1, 29–52 (2018)

    Article  Google Scholar 

  • Terry Suh, HJ., Xiong, X., Singletary, A., Ames, AD., Burdick, JW.: Energy-efficient motion planning for multi-modal hybrid locomotion. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 7027–7033 (2020). https://doi.org/10.1109/IROS45743.2020.9340761

  • Tomić, T., Haddadin, S.: A unified framework for external wrench estimation, interaction control and collision reflexes for flying robots. In: International Conference on Intelligent Robots and Systems, IEEE, pp 4197–4204 (2014)

  • Vincent, P., Rubin, I.: A framework and analysis for cooperative search using uav swarms. In: Proceedings of the 2004 ACM symposium on Applied computing, pp 79–86 (2004)

  • Von Bayern, A.M., Heathcote, R.J., Rutz, C., Kacelnik, A.: The role of experience in problem solving and innovative tool use in crows. Curr. Biol. 19(22), 1965–1968 (2009)

    Article  Google Scholar 

  • Wang, H., Totaro, M., Beccai, L.: Toward perceptive soft robots: progress and challenges. Adv. Sci. 5(9), 1800541 (2018)

    Article  Google Scholar 

  • Werner, P., Hofer, M., Sferrazza, C., D’Andrea, R.: Vision-based proprioceptive sensing: Tip position estimation for a soft inflatable bellow actuator. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 8889–8896 (2020). https://doi.org/10.1109/IROS45743.2020.9341271

  • Winston, C.: A multi-modal robot for ground and aerial locomotion. PhD thesis, Massachusetts Institute of Technology (2019)

  • Wissa, A., Calogero, J., Wereley, N., Hubbard Jr., J.E., Frecker, M.: Analytical model and stability analysis of the leading edge spar of a passively morphing ornithopter wing. Bioinspirat. Biomimet. 10(6), 065003 (2015)

    Article  Google Scholar 

  • Xu, D., Hui, Z., Liu, Y., Chen, G.: Morphing control of a new bionic morphing uav with deep reinforcement learning. Aerosp. Sci. Technol. 92, 232–243 (2019)

    Article  Google Scholar 

  • Yang, D., Mishra, S., Aukes, DM., Zhang, W.: Design, planning, and control of an origami-inspired foldable quadrotor. In: Proceedings of the American Control Conference, IEEE, pp 2551–2556 (2019)

  • Yang, X., Wang, T., Liang, J., Yao, G., Liu, M.: Survey on the novel hybrid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (aquauav). Prog. Aerosp. Sci. 74, 131–151 (2015)

    Article  Google Scholar 

  • Zarrouk, D., Pullin, A., Kohut, N., Fearing, R. S.: Star, a sprawl tuned autonomous robot. In: 2013 IEEE International Conference on Robotics and Automation, IEEE, pp 20–25 (2013)

  • Zha, J., Mueller, M.W.: Exploiting collisions for sampling-based multicopter motion planning (2020). arXiv preprint arXiv:201104091

  • Zha, J., Thacher, E., Kroeger, J., Mäkiharju, SA., Mueller, MW .: Towards breaching a still water surface with a miniature unmanned aerial underwater vehicle. In: International Conference on Unmanned Aircraft Systems, IEEE, pp 1178–1185 (2019)

  • Zhao, M., Anzai, T., Shi, F., Chen, X., Okada, K., Inaba, M.: Design, modeling, and control of an aerial robot dragon: a dual-rotor-embedded multilink robot with the ability of multi-degree-of-freedom aerial transformation. IEEE Robot. Automat. Lett. 3(2), 1176–1183 (2018)

    Article  Google Scholar 

  • Zhao, N., Luo, Y., Deng, H., Shen, Y.: The deformable quad-rotor: design, kinematics and dynamics characterization, and flight performance validation. In: International Conference on Intelligent Robots and Systems, IEEE, pp 2391–2396 (2017)

  • Zheng, P., Tan, X., Kocer, B.B., Yang, E., Kovac, M.: Tiltdrone: a fully-actuated tilting quadrotor platform. IEEE Robot. Automat. Lett. 5(4), 6845–6852 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karishma Patnaik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patnaik, K., Zhang, W. Towards reconfigurable and flexible multirotors. Int J Intell Robot Appl 5, 365–380 (2021). https://doi.org/10.1007/s41315-021-00200-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-021-00200-4

Keywords

Navigation