Skip to main content
Log in

Highly specific fingerprinting of alkaline earth metal ions by a tunable plasmonic nanosensor array based on nanoaggregation of metallochromic dyes-AuNPs

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Metal ions, specifically alkaline earth metal ions (AEMIs; Mg2+, Ca2+, Sr2+, and Ba2+), have essential roles in industrial processes, medical testing, and environmental evaluation; therefore, developing sensitive detection methods capable of their contents is highly required. To this aim, we have designed an absorbance nanosensor array using three metallochromic dyes decorated on AuNPs and have monitored variations in AuNP plasmonic profiles upon the addition of AEMIs in different buffer and pH solutions. The array is designed in a tunable size of 2 × 3 × 1(2/3); as the type buffer and pH of solution are fixed, the number of dyes can be changed in three individual modes, three binary modes, and a ternary mode, respectively. Owing to the different binding affinities of AEMIs toward dyes in different buffer and pH solutions, fingerprint-like plasmonic profiles with different levels of aggregation AuNPs were generated for all modes of array. These aggregation AuNP-based fingerprint profiles in the wavelengths of 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, and 750 nm were used to discriminate the AEMIs by applying pattern recognition methods including linear discrimination analysis (LDA) and hierarchical clustering analysis (HCA) to identify each AEMI in the range 2.1–24.7 μM. Accordingly, limits of detection (LODs) values of 0.013 (±3.13), 0.014 (±2.99), 0.020 (±4.17), and 0.017 (±4.31) μM were obtained the Mg2+, Ca2+, Sr2+, and Ba2+, respectively. The results revealed that all the modes of array could well differentiate complex mixtures of the AEMIs. Our suggested array also exhibited a good performance in the differentiation of AEMIs in real samples and a certified reference material (CRM) sample.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun J, Lu Y, He L, Pang J, Yang F, Liu Y (2019) A colorimetric sensor array for protein discrimination based on carbon nanodots induced reversible aggregation of AuNP with GSH as a regulator. Sens Actuators B Chem 296:126677. https://doi.org/10.1016/j.snb.2019.126677

    Article  CAS  Google Scholar 

  2. Lee J, Jung Y, Sung SH, Lee G, Kim J, Seong J, Shim YS, Jun SC, Jeon S (2021) High performance gas sensor array for indoor air quality monitoring. J Master Chem A 9:1159–1167. https://doi.org/10.1039/D0TA08743B

    Article  CAS  Google Scholar 

  3. Bordbar MM, Nguyen TA, Tran AQ, Bagheri H (2020) Optoelectronic nose based on an origami paper sensor for selective detection of pesticide aerosols. Sci Rep 10:17302. https://doi.org/10.1038/s41598.020.74509.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang XP, Huang KY, He SB, Peng HP, Xia XH, Chen W (2020) Single gold nanocluster probe-based fluorescent sensor array for heavy metal ion discrimination. J Hazard Mat 124259. https://doi.org/10.1016/j.jhazmat.2020.124259

  5. Kim S-Y, Seo H-Y, Ha J-H (2020) A colorimetric sensor array for the discrimination of glucosinolates. Food Chem 328:127149. https://doi.org/10.1016/j.foodchem.2020.127149

    Article  CAS  PubMed  Google Scholar 

  6. Chen Z-H, Fan Q-X, Han X-Y, Shi G, Zhang M (2020) Design of smart chemical tongue sensor arrays for pattern recognition based biochemical sensing applications. Trends Anal Chem 124:115794. https://doi.org/10.1016/j.trac.2019.115794

    Article  CAS  Google Scholar 

  7. Rasouli Z, Ghavami R (2020) Facile approach to fabricate a chemical sensor array based on nanocurcumin-metal ions aggregates: detection and identification of DNA nucleobases. ACS Omega 5:19331–19341. https://doi.org/10.1021/acsomega.0c00593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li Z, Askim JR, Suslick KS (2019) The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chem Rev 119:231–292. https://doi.org/10.1021/acs.chemrev.8b00226

    Article  CAS  PubMed  Google Scholar 

  9. Vilela D, González MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation. Anal Chim Acta 751:24–43. https://doi.org/10.1016/j.aca.2012.08.043

    Article  CAS  PubMed  Google Scholar 

  10. Chang C-C, Chen C-P, Wu T-H, Yang C-H, Lin C-W, Chen C-Y (2019) Gold nano particle based colorimetric strategies for chemical and biological sensing applications. Nanomaterials 9:861. https://doi.org/10.3390/nano9060861

    Article  CAS  PubMed Central  Google Scholar 

  11. Yu L, Li N (2019) Noble metals nanoparticles based colorimetric biosensor for visual quantification. Chemosensors 7:53. https://doi.org/10.3390/chemosensors7040053

    Article  CAS  Google Scholar 

  12. Souza CDD, Nogueira BR, Rostelato MECM (2019) Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J Alloys Compd 798:714–740. https://doi.org/10.1016/j.jallcom.2019.05.153

    Article  CAS  Google Scholar 

  13. Li X, Li S, Liu Q, Chen Z, Chen Z (2019) Electronic-tongue colorimetric-sensor array for discrimination and quantitation of metal ions based on gold-nanoparticle aggregation. Anal Chem 91:6315–6320 http://orcid.org/0000-0002-9443-7929

    Article  CAS  Google Scholar 

  14. Shui Z, Li J, Yang P, Huo D, Hou C, Shen C (2019) Amino acid modulating gold nanoparticle sensor array. Anal Methods 11:5691. https://doi.org/10.1039/c9ay01791g

    Article  CAS  Google Scholar 

  15. Bowyer AA, Shen C, New EJ (2020) Fluorescent three sensor array for heavy metals in environmental water sources. Analyst 145:1195–1201. https://doi.org/10.1039/c9an02182e

    Article  CAS  PubMed  Google Scholar 

  16. Najafzadeh F, Ghasemi F, Hormozi-Nezhad, MR (2018) Anti-aggregation of gold nanoparticles for metal ion discrimination: a promising strategy to design colorimetric sensor arrays 270:545–551. https://doi.org/10.1016/j.snb.2018.05.065

  17. Akhter F, Nag A, Alahi MEE, Liu H, Mukhopadhyay SC (2020) Electrochemical detection of calcium and magnesium in water bodies. Sens Actuators A Phys 305:111949. https://doi.org/10.1016/j.sna.2020.111949

    Article  CAS  Google Scholar 

  18. Yin J, Hu Y, Yoon J (2015) Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH. Chem Soc Rev 44:4619–4644. https://doi.org/10.1039/c4cs00275j

    Article  CAS  PubMed  Google Scholar 

  19. Clark CT, Horstmann L, Misarti N (2021) Evaluating tooth strontium and barium as indicators of weaning age in Pacific walruses. Sci Total Environ 772:145500–141638. https://doi.org/10.1111/2041-210X.13482

    Article  CAS  PubMed  Google Scholar 

  20. Peng L-Q, Ye L-H, Cao J, Du L-J, Xu J-J, Zhang Q-D (2017) Separation of metal ions via capillary electrophoresis using a pseudostationary phase microfunctionalized with carbon nanotubes. Microchim Acta 184:1747–1754. https://doi.org/10.1007/s00604.017.2172.9

    Article  CAS  Google Scholar 

  21. Liu Y-Q, Yu H (2017) Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography. J Sep Sci 40:1660–1666. https://doi.org/10.1002/jssc.201601297

    Article  CAS  PubMed  Google Scholar 

  22. Yagi S, Nakamura S, Watanabe D, Nakazumi H (2009) Colorimetric sensing of metal ions by bis spiropyran podands. Dyes Pigments 80:98–105. https://doi.org/10.1016/j.dyepig.2008.05.012

    Article  CAS  Google Scholar 

  23. Zhang Z, Yuan A, Chen C, Zheng C, Xu H (2011) A colorimetric selective sensing probe for calcium ions with tunable dynamic ranges using glutathione modified gold nanoparticles. J Clust Sci 47:10299–10301. https://doi.org/10.1007/s10876.018.1349.7

    Article  Google Scholar 

  24. Wu X, Tang W, Hou C, Zhang C, Zhu N (2014) Colorimetric and bare eye detection of alkaline earth metal ions based on the aggregation of silver nanoparticles functionalized with thioglycolic acid. Microchim Acta 181:991–998. https://doi.org/10.1007/s00604.014.1185.x

    Article  CAS  Google Scholar 

  25. Duenchay P, Chailapakul O, Siangproh W (2019) A transparency sheet based colorimetric device for simple determination of calcium ions using induced aggregation of modified gold nanoparticles. Int J Mol Sci 20:2954. https://doi.org/10.3390/ijms20122954

    Article  CAS  PubMed Central  Google Scholar 

  26. Arunkumar E, Chithra P, Ajayaghosh A (2004) A controlled supramolecular approach toward cation specific chemosensors: alkaline earth metal ion-driven exciton signaling in squaraine tethered podands. J Am Chem Soc 126:6590–6598. https://doi.org/10.1021/ja0393776

    Article  CAS  PubMed  Google Scholar 

  27. Hogendoorn C, Roszczenko-Jasińska P, Martinez-Gomez C, Graaff JD, Grassl P, Pol A, Camp HJMOD, Daumann LJ (2018) Facile arsenazo based assay for monitoring rare earth element depletion from cultivation media of methanotrophic and methylotrophic bacteria. Appl Environ Microbiol 84:02887–02817. https://doi.org/10.1128/aem.0288717

    Article  Google Scholar 

  28. Liang Y, He Y (2016) Arsenazo III-functionalized gold nanoparticles for photometric determination of uranyl ion. Microchim Acta 183:407–413. https://doi.org/10.1007/s0060401516595

    Article  CAS  Google Scholar 

  29. Yadav R, Pandey BN, Kumar A (2020) Estimation and in situ detection of thorium in human liver cell culture by arsenazo III-based colorimetric assay. Biometals 33:75–85. https://doi.org/10.1007/s10534019002312

    Article  CAS  PubMed  Google Scholar 

  30. Cui Z-P, Liu S-P, Liu Z-F, Zheng H-Z, Hu X-L, Xue J-X, Tian J (2014) Interaction of proteins with aluminium(III)-chlorophosphonazo III by resonance Rayleigh scattering method. Luminescence 29:728–737. https://doi.org/10.1002/bio.2614

    Article  CAS  PubMed  Google Scholar 

  31. Emir G, Dilgin Y (2017) Flow injection analysis of sulfide at a calmagite modified pencil graphite electrode. Anal Lett 51:133–150. https://doi.org/10.1080/00032719.2017.1317782

    Article  CAS  Google Scholar 

  32. Rasouli Z, Ghavami R (2016) Simultaneously detection of calcium and magnesium in various samples by calmagite and chemometrics data processing. Spectrochim Acta A Mol Biomol Spectrosc 169:72–81. https://doi.org/10.1016/j.saa.2016.06.027

    Article  CAS  PubMed  Google Scholar 

  33. Zenki M, Masutani T, Yokoyama T (2002) Repetitive determination of calcium ion and regeneration of a chromogenic reagent using chlorophosphonazo III and an ion exchanger in a circulatory flow injection system. Anal Sci 18:1137–1140. https://doi.org/10.2116/analsci.18.1137

    Article  CAS  PubMed  Google Scholar 

  34. Zhao H, Cheng X, Chang J (2011) Spectrophotometric determination of the Ca ion content in steel slag by using chlorophosphonazo as the spectral chromogenic reagent. Adv Mater Res 306:989–993. https://doi.org/10.4028/www.scientific.net/amr.306.989

    Article  Google Scholar 

  35. Noda K, Sato Y, Miura T, Katayama K, Kojima R (2010) Development of novel measurement assay for calcium in serum by the chlorophosphonazo-III vanadate method. Ann Clin Biochem 47:440–446. https://doi.org/10.1258/acb.2010.010013

    Article  CAS  PubMed  Google Scholar 

  36. Stoll VS, Blanchard JS (2009) Buffers: principles and practice. Methods Enzymol 463(4):3–56. https://doi.org/10.1016/0076.6879.90.82006.n

    Article  Google Scholar 

  37. Ferreira CMH, Pinto ISS, Soares EV, Soares HMVM (2015) Unsuitability of the use of pH buffers in biological biochemical and environmental studies and their interaction with metal ions. RSC Adv 5:30989–31003. https://doi.org/10.1039/c4ra15453c

    Article  CAS  Google Scholar 

  38. Rasouli Z, Ghavami R (2021) A 3×3 visible-light cross-reactive sensor array based on the nanoaggregation of curcumin in different pH and buffers for the multivariate identification and quantification of metal ions. Talanta 780:122131. https://doi.org/10.1016/j.talanta.2021.122131

    Article  CAS  Google Scholar 

  39. Parsons DF, Bostrom M, Nostro PL, Ninham BW (2011) Hofmeister effects interplay of hydration nonelectrostatic potentials and ion size. Phys Chem Chem Phys 193:12352–12367. https://doi.org/10.1039/c1cp20538b

    Article  CAS  Google Scholar 

  40. Hanlon DP, Watt DS, Westhead EW (1996) The interaction of divalent metal ions with tris buffer in dilute solution. Anal Biochem 16:225–233. https://doi.org/10.1016/0003269766901503

    Article  Google Scholar 

  41. Wyrzykowski D, Pilarski B, Jacewisz D, Chmurzynski L (2013) Investigation of metal buffer interaction using isothermal titration calorimetry. J Therm Anal Calorim 111:1829–1836. https://doi.org/10.1007/s109730122593y

    Article  CAS  Google Scholar 

  42. Long Z, Fang DC, Ren H, Ouyang J, He L, Na N (2016) Excited oxidized carbon nanodots induced by ozone from low temperature plasma to initiate strong chemiluminescence for fast discrimination of metal ions. Anal Chem 88:7660–7666. https://doi.org/10.1021/acs.analchem.6b01499

    Article  CAS  PubMed  Google Scholar 

  43. Qiu H, Pu F, RanX RJ, Qu X (2017) A DNA-based label-free artificial tongue for pattern recognition of metal ions. Chem Eur J12:9258–9261. https://doi.org/10.1002/chem.201702342

    Article  CAS  Google Scholar 

  44. Li Y, Hou J, Zhou H, Jia M, Chen S, Huang H, Zhang L, Yu C (2020) A fluorescence sensor array based on perylene probe monomer-excimer emission transition for the highly efficient differential sensing of metal ions and drinking waters. Sens Actuators B Chem 319:128212. https://doi.org/10.1016/j.snb.2020.128212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the University of Kurdistan for this study.

Author information

Authors and Affiliations

Authors

Contributions

Zolaikha Rasouli and Raouf Ghavami designed the original idea of the project. Ailin Shykholeslami performed the experiments. Zolaikha Rasouli analyzed all the chemometrics calculations. Ailin Shykholeslami and Zolaikha Rasouli wrote the manuscript.

Corresponding authors

Correspondence to Zolaikha Rasouli or Raouf Ghavami.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 30348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shykholeslami, A., Rasouli, Z. & Ghavami, R. Highly specific fingerprinting of alkaline earth metal ions by a tunable plasmonic nanosensor array based on nanoaggregation of metallochromic dyes-AuNPs. Microchim Acta 188, 310 (2021). https://doi.org/10.1007/s00604-021-04976-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04976-x

Keywords

Navigation