Skip to main content
Log in

Impact of Kelvin force on treatment of nanofluid with mathematical modeling

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The mathematical model for nanomaterial convection through a complex geometry in presence of Kelvin force has been reported in this article. To involve the feature of nanomaterial, single phase model was selected which has nice accuracy for low concentration of iron oxide. Impose of magnetic source next to inner hot wall generates the new force which helps the nanofluid migration. The mathematical equations were solved via CVFEM. The accuracy of method was checked with comparing results against old publication. The styles of flow and isotherms with change of Ra, MnF were examined in results. Augment of Kelvin force converts the sole vortex to two eddies with opposite directions in low Ra and thermal plume appears inside the domain. Rise of buoyancy makes the strength of eddy to augment and Kelvin force makes the streamline values to increase. Nu enhances about 179. 36% with rise of Kelvin forces when Ra = 1e5. Nu augments about 11.13% with dispersing nanoparticles in to H2O. Rise of Ra makes Nu to grow about 119.97% when MnF = 4000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdulkadhim A, Hamzah HK, Ali FH, Abed AM, Abed IM (2019) Natural convection among inner corrugated cylinders inside wavy enclosure filled with nanofluid superposed in porous–nanofluid layers. Int Commun Heat Mass Transfer 109:104350

    Article  CAS  Google Scholar 

  • Benos LT, Karvelas EG, Sarris IE (2019) Crucial effect of aggregations in CNT-water nanofluid magnetohydrodynamic natural convection. Thermal Sci Eng Progress 11:263–271

    Article  Google Scholar 

  • Duan Y, Liu Y, Chen Z, Liu D, Yu E, Zhang X et al (2020) Amorphous molybdenum sulfide nanocatalysts simultaneously realizing efficient upgrading of residue and synergistic synthesis of 2D MoS2 nanosheets/carbon hierarchical structures. Green Chem 22(1):44–53. https://doi.org/10.1039/C9GC02855B

    Article  CAS  Google Scholar 

  • Groşan T, Revnic C, Pop I, Ingham DB (2015) Free convection heat transfer in a square cavity filled with a porous medium saturated by a nanofluid. Int J Heat Mass Transfer 87:36–41

    Article  Google Scholar 

  • Huang W, Wang G, Li W, Li T, Ji G, Ren S et al (2020) Porous ligand creates new reaction route: bifunctional single-atom palladium catalyst for selective distannylation of terminal alkynes. Chem 6(9):2300–2313. https://doi.org/10.1016/j.chempr.2020.06.020

    Article  CAS  Google Scholar 

  • Hussain S, Ahmed SE (2019) Steady natural convection in open cavities filled with a porous medium utilizing Buongiorno’s nanofluid model. Int J Mech Sci 157–158:692–702

    Article  Google Scholar 

  • Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transfer 46:3639–3653

    Article  CAS  Google Scholar 

  • Li H, Xu B, Lu G, Du C, Huang N (2021a) Multi-objective optimization of PEM fuel cell by coupled significant variables recognition, surrogate models and a multi-objective genetic algorithm. Energy Conversion Manag 236:114063. https://doi.org/10.1016/j.enconman.2021.114063

    Article  CAS  Google Scholar 

  • Li H, Gao Y, Du C, Hong W (2021b) Numerical study on swirl cooling flow, heat transfer and stress characteristics based on fluid-structure coupling method under different swirl chamber heights and Reynolds numbers. Int J Heat Mass Transfer 173:121228. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121228

    Article  Google Scholar 

  • Li Z, Shi Y, Zhu A, Zhao Y, Wang H, Binks BP et al (2021c) Light-responsive, reversible emulsification and demulsification of oil-in-water pickering emulsions for catalysis. Angewandte Chemie (international Ed.) 60(8):3928–3933. https://doi.org/10.1002/anie.202010750

    Article  CAS  Google Scholar 

  • Liu Y, Xu T, Liu Y, Gao Y, Di C (2020) Wear and heat shock resistance of Ni-WC coating on mould copper plate fabricated by laser. J Mater Res Technol 9(4):8283–8288. https://doi.org/10.1016/j.jmrt.2020.05.083

    Article  CAS  Google Scholar 

  • Liu H, Li X, Liu X, Ma Z, Yin Z, Yang W et al (2021) Schiff-base-rich g-CxN4 supported PdAg nanowires as an efficient Mott-Schottky catalyst boosting photocatalytic dehydrogenation of formic acid. Rare Met 40(4):808–816. https://doi.org/10.1007/s12598-020-01637-5

    Article  CAS  Google Scholar 

  • Manh TD, Salehi F, Shafee A, Nam ND, Shakeriaski F, Babazadeh H, Vakkar A, Tlili I (2021) Role of magnetic force on the transportation of nano powders including radiation. J Thermal Anal Calorimetry. https://doi.org/10.1007/s10973-019-09182-9

    Article  Google Scholar 

  • Meng F, Pang A, Dong X, Han C, Sha X, Jing N et al (2018) H∞ optimal performance design of an unstable plant under bode integral constraint. Complexity (new York, NY). https://doi.org/10.1155/2018/4942906

    Article  Google Scholar 

  • Meng F, Wang D, Yang P, Xie G, Cutberto R et al (2019) Application of sum of squares method in nonlinear H∞ control for satellite attitude maneuvers. Complexity (new York, NY). https://doi.org/10.1155/2019/5124108

    Article  Google Scholar 

  • Ni Z, Cao X, Wang X, Zhou S, Zhang C, Xu B, Ni Y (2021) Facile synthesis of copper(I) oxide nanochains and the photo-thermal conversion performance of its nanofluids. Coatings 11:749. https://doi.org/10.3390/coatings11070749

    Article  CAS  Google Scholar 

  • Nithyadevi N, Begum AS, Oztop HF, Abu-Hamdeh N (2017) Mixed convection analysis in heat transfer enhancement of a nanofluid filled porous enclosure with various wall speed ratios. Int J Heat Mass Transfer 113:716–729

    Article  CAS  Google Scholar 

  • Oğlakkaya FS, Bozkaya C (2016) MHD natural convection in a semi-annulus enclosure filled with water-based nanofluid using DRBEM. Eng Anal Boundary Elements 71:151–163

    Article  Google Scholar 

  • Qi C, Tang J, Ding Z, Yan Y, Guo L, Ma Y (2019) Effects of rotation angle and metal foam on natural convection of nanofluids in a cavity under an adjustable magnetic field. Int Commun Heat Mass Transfer 109:104349

    Article  CAS  Google Scholar 

  • Qin Y (2021a) Simulation of MHD impact on nanomaterial irreversibility and convective transportation through a chamber. Appl Nanosci. https://doi.org/10.1007/s13204-021-01941-1

    Article  Google Scholar 

  • Qin Y (2021b) Effect of inclusion of nanoparticles on unsteady heat transfer. Appl Nanosci. https://doi.org/10.1007/s13204-021-01960-y

    Article  Google Scholar 

  • Qin Y (2021c) Nanofluid heat transfer within a pipe equipped with external device. Int Commun Heat Mass Transfer 127:105487

    Article  CAS  Google Scholar 

  • Raju CSK, Hoque MM, Anika NN, Mamatha SU, Sharma P (2017) Natural convective heat transfer analysis of MHD unsteady Carreau nanofluid over a cone packed with alloy nanoparticles. Powder Technol 317:408–416

    Article  CAS  Google Scholar 

  • Ren S, Ye B, Li S, Pang L, Pan Y et al (2021) Well-defined coordination environment breaks the bottleneck of organic synthesis: single-atom palladium catalyzed hydrosilylation of internal alkynes. Nano Res. https://doi.org/10.1007/s12274-021-3694-3

    Article  Google Scholar 

  • Said Z, Sundar LS, Tiwari AK, Ali HM, Sheikholeslami M, Bellos E, Babar H (2021) Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Phys Rep. https://doi.org/10.1016/j.physrep.2021.07.002

    Article  Google Scholar 

  • Sheikholeslami M (2019) New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng 344:319–333

    Article  Google Scholar 

  • Sheikholeslami M, Farshad SA (2021) Investigation of solar collector system with turbulator considering hybrid nanoparticles. Renew Energy 171:1128–1158. https://doi.org/10.1016/j.renene.2021.02.137

    Article  CAS  Google Scholar 

  • Sheikholeslami M, Ghasemi A (2018) Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transfer 123:418–431

    Article  CAS  Google Scholar 

  • Sheikholeslami M, Vajravelu K (2017) Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl Math Comput 298:272–282

    Google Scholar 

  • Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S (2018) Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transfer 126:1252–1264

    Article  CAS  Google Scholar 

  • Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK (2019) Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transfer 141:974–980

    Article  CAS  Google Scholar 

  • Sheikholeslami M, Farshad SA, Said Z (2021a) Analyzing entropy and thermal behavior of nanomaterial through solar collector involving new tapes. Int Commun Heat Mass Transfer 123:105190. https://doi.org/10.1016/j.icheatmasstransfer.2021.105190

    Article  CAS  Google Scholar 

  • Sheikholeslami M, Farshad SA, Ebrahimpour Z, Said Z (2021b) Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: a review. J Cleaner Prod 293:126119. https://doi.org/10.1016/j.jclepro.2021.126119

    Article  CAS  Google Scholar 

  • Shen G, Ma L, Zhang S, Zhang S, An L (2019) Effect of ultrasonic waves on heat transfer in Al2O3 nanofluid under natural convection and pool boiling. Int J Heat Mass Transfer 138:516–523

    Article  CAS  Google Scholar 

  • Sun J, Aslani F, Wei J, Wang X (2021) Electromagnetic absorption of copper fiber oriented composite using 3D printing. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.124026

    Article  Google Scholar 

  • Wang D, Cheng P, Quan X (2019) A solid-liquid local thermal non-equilibrium lattice Boltzmann model for heat transfer in nanofluids. Part II: Natural convection of nanofluids in a square enclosure. Int J Heat Mass Transfer 130:1358–1365

    Article  CAS  Google Scholar 

  • Wang R, Yuan Y, Zhang J, Zhong X, Liu J, Xie Y et al (2021) Embedding Fe2P nanocrystals in bayberry-like N, P-enriched carbon nanospheres as excellent oxygen reduction electrocatalyst for zinc-air battery. J Power Sources 501:230006. https://doi.org/10.1016/j.jpowsour.2021.230006

    Article  CAS  Google Scholar 

  • Xu X, Nieto-Vesperinas M (2019) Azimuthal imaginary poynting momentum density. Phys Rev Lett 123(23):233902. https://doi.org/10.1103/PhysRevLett.123.233902

    Article  CAS  Google Scholar 

  • Xu Q, Liu L, Feng J, Qiao L, Yu C, Shi W et al (2020) A comparative investigation on the effect of different nanofluids on the thermal performance of two-phase closed thermosyphon. Int J Heat Mass Transfer 149:119189. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119189

    Article  CAS  Google Scholar 

  • Yang Y, Chen H, Zou X, Shi X, Liu W, Feng L et al (2020) Flexible carbon-fiber/semimetal bi nanosheet arrays as separable and recyclable plasmonic photocatalysts and photoelectrocatalysts. ACS Appl Mater Interfaces 12(22):24845–24854. https://doi.org/10.1021/acsami.0c05695

    Article  CAS  Google Scholar 

  • Zhang X, Wang Y, Wang C, Su C, Li Z et al (2019) Adaptive estimated inverse output-feedback quantized control for piezoelectric positioning stage. IEEE Trans Cybern 49(6):2106–2118. https://doi.org/10.1109/TCYB.2018.2826519

    Article  Google Scholar 

  • Zhang Y, Li HN, Li C, Huang C, Ali HM, Xu X, Mao C, Ding W, Cui X, Yang M, Yu T, Jamil M, Gupta MK, Jia D, Said Z (2021a) Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction. https://doi.org/10.1007/s40544-021-0536-y

    Article  Google Scholar 

  • Zhang L, Zhang M, You S, Ma D, Zhao J et al (2021b) Effect of Fe3+ on the sludge properties and microbial community structure in a lab-scale A2O process. Sci Total Environ 780:146505. https://doi.org/10.1016/j.scitotenv.2021.146505

    Article  CAS  Google Scholar 

  • Zhuo Z, Wan Y, Guan D, Ni S, Wang L, Zhang Z et al (2020) A loop-based and AGO-incorporated virtual screening model targeting AGO-mediated miRNA–mRNA interactions for drug discovery to rescue bone phenotype in genetically modified mice. Adv Sci 7(13):1903451. https://doi.org/10.1002/advs.201903451

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Bandar Almohsen is supported by Researchers Supporting Project number (RSP-2021/158), King Saud University, Riyadh, Saudi Arabia

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bandar Almohsen.

Ethics declarations

Conflict of interest

Researchers declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almohsen, B. Impact of Kelvin force on treatment of nanofluid with mathematical modeling. Appl Nanosci 13, 2767–2775 (2023). https://doi.org/10.1007/s13204-021-02045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-02045-6

Keywords

Navigation