Skip to main content

Advertisement

Log in

Dynamics of water-use efficiency and status in promising Hevea brasiliensis genotypes: implications for clonal selection

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

The rubber trees (Hevea brasiliensis) are exposed to water limitations in the Amazon region that can affect its physiology, making it necessary to select genotypes that are best adapted. This study analyzed the diurnal and seasonal changes in water use and status using traits of gas exchange and water relations in ten rubber tree genotypes in the immaturity phase from large-scale clone trials at three localities in the northwestern Colombian Amazon. In San Vicente del Caguán (semi-humid warm climate), the greatest means for water-use efficiency (WUEe and WUEi) and leaf water potential (ΨL) were observed, in contrast with Belén de los Andaquíes (humid warm) where there was a higher relative water content (RWC). Florencia (humid warm) presented high averages for WUEe and WUEi similar to San Vicente del Caguán. The WUEe and WUEi were greater in the dry season, contrary to those observed in ΨL and RWC. The WUEe was higher in the time range 9:00 to 12:00, while ΨL had a greater mean at 3:00 and a lower average at 12:00. In the dry season, the more efficient genotypes for water use had a higher leaf water potential as well as a lower relative water content, and had an extreme anisohydric behavior. In the wet season, these had a partial isohydric strategy. The FX 4098, MDF 180 and FDR 5597 genotypes were selected because of their greater adaptive capacity for water use and status, as compared to clone IAN 873 (control), which makes them desirable for future climate drought scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data produced and analyzed in this research are included in this manuscript.

Code availability

Not applicable.

References

  1. Venkatachalam P, Geetha N, Sangeetha P, Thulaseedharan A (2013) Natural rubber producing plants: an overview. African J Biotechnol 12:1297–1310. https://doi.org/10.5897/AJBX12.016

    Article  CAS  Google Scholar 

  2. Gonçalves P de S, Ortolani AA, Cardoso M (1997) Melhoramento genetico da seringueira: uma revisão. Instituto Agronomico, de Campinas - IAC, Brazil

  3. Priyadarshan PM (ed) (2017) Biology of Hevea Rubber, 1st edn. Springer International Publishing. https://doi.org/10.1007/978-3-319-54506-6

    Book  Google Scholar 

  4. Gouvêa L, Silva G, Verardi C, Silva J, Scaloppi-Junior E, Gonçalves P (2012) Temporal stability of vigor in rubber tree genotypes in the pre- and post-tapping phases using different methods. Euphytica. https://doi.org/10.1007/s10681-012-0688-y

    Article  Google Scholar 

  5. Gonçalves PDS, Silva MDA, Gouvêa LR, Scaloppi EJ (2006) Genetic variability for girth growth and rubber yield in Hevea brasiliensis. Sci Agric 63:246–254. https://doi.org/10.1590/S0103-90162006000300006

    Article  Google Scholar 

  6. Oliveira ALB, Gouvêa LRL, Verardi CK, Silva GAP, de Gonçalves PS (2015) Genetic variability and predicted genetic gains for yield and laticifer system traits of rubber tree families. Euphytica 203:285–293. https://doi.org/10.1007/s10681-014-1256-4

    Article  Google Scholar 

  7. Souza AMD, Gouvêa LRL, de Oliveira ALB, Silva GAP, de Souza GP (2017) Associations among rubber yield and secondary traits in juvenile rubber trees progeny. Euphytica. https://doi.org/10.1007/s10681-016-1804-1

    Article  Google Scholar 

  8. Tan D, Kumpeangkeaw A, Sun X, Li W, Zhu Y, Zhang J (2019) Comparative morphology of in vivo and in vitro laticiferous cells and potential use of in vitro laticifers in early selection of rubber tree clones. Trees - Struct Funct 33:193–203. https://doi.org/10.1007/s00468-018-1768-y

    Article  CAS  Google Scholar 

  9. Gasparotto L, Ferreira FA, Dos Santo AF, Rezende PJ, Furtado EL (2012) Capítulo 3: Doenças das folhas. In: Gasparotto L, Pereira RJC (eds) Doenças da seringueira no Brasil. EMBRAPA Amazônia Occidental, Brasília, DF, pp 39–176

    Google Scholar 

  10. Guyot J, Le Guen V (2018) A review of a century of studies on South American leaf blight of the rubber tree. Plant Dis. https://doi.org/10.1094/PDIS-04-17-0592-FE

    Article  Google Scholar 

  11. Rivano F, Mattos CRR, Cardoso SEA, Martinez M, Cevallos V, Le Guen V et al (2013) Breeding Hevea brasiliensis for yield, growth and SALB resistance for high disease environments. Ind Crops Prod 44:659–670. https://doi.org/10.1016/j.indcrop.2012.09.005

    Article  Google Scholar 

  12. Sterling A, Martínez-Viuche EJ, Suárez-Córdoba YD, Agudelo-Sánchez AA, Fonseca-Restrepo JA, Andrade-Ramírez TK et al (2020) Assessing growth, early yielding and resistance in rubber tree clones under low South American Leaf Blight pressure in the Amazon region. Colombia Ind Crops Prod 158:112958. https://doi.org/10.1016/j.indcrop.2020.112958

    Article  CAS  Google Scholar 

  13. Nugawela A, Aluthhewage R (1985) Gas exchange parameters for early selection of Hevea brasiliensis Muell. Arg. J Rubber Res Inst Sri Lanka 1:13–20

    Google Scholar 

  14. Rodrigo VHL (2007) Ecophysiological factors underpinning productivity of Hevea brasiliensis. Brazilian J Plant Physiol 19:245–255. https://doi.org/10.1590/S1677-04202007000400002

    Article  Google Scholar 

  15. Sterling A, Rodríguez N, Quiceno E, Trujillo F, Clavijo A, Suárez-Salazar JC (2019) Dynamics of photosynthetic responses in 10 rubber tree (Hevea brasiliensis) clones in Colombian Amazon: implications for breeding strategies. PLoS ONE 14:e0226254. https://doi.org/10.1371/journal.pone.0226254

    Article  CAS  Google Scholar 

  16. Whitehead D (1998) Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiol 18:633–644. https://doi.org/10.1093/treephys/18.8-9.633

    Article  Google Scholar 

  17. Urban J, Ingwers MW, McGuire MA, Teskey RO (2017) Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. J Exp Bot 68:1757–1767. https://doi.org/10.1093/jxb/erx052

    Article  CAS  Google Scholar 

  18. Tanentzap FM, Stempel A, Ryser P (2015) Reliability of leaf relative water content (RWC) measurements after storage: Consequences for in situ measurements. Botany 93:535–541. https://doi.org/10.1139/cjb-2015-0065

    Article  Google Scholar 

  19. Galmés J, Flexas J, Savé R, Medrano H (2007) Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. Plant Soil 290:139–155. https://doi.org/10.1007/s11104-006-9148-6

    Article  CAS  Google Scholar 

  20. Yan W, Zhong Y, Shangguan Z (2016) A meta-analysis of leaf gas exchange and water status responses to drought. Sci Rep 6:1–9. https://doi.org/10.1038/srep20917

    Article  CAS  Google Scholar 

  21. Zhang D, Du Q, Zhang Z, Jiao X, Song X, Li J (2017) Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer. Sci Rep 7:1–11. https://doi.org/10.1038/srep43461

    Article  Google Scholar 

  22. Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117. https://doi.org/10.1007/s11120-013-9874-6

    Article  CAS  Google Scholar 

  23. Devi MJ, Reddy VR (2018) Transpiration response of cotton to vapor pressure deficit and its relationship with stomatal traits. Front Plant Sci 871:1–12. https://doi.org/10.3389/fpls.2018.01572

    Article  Google Scholar 

  24. Li Y, Zhou L, Wang S, Chi Y, Chen J (2018) Leaf temperature and Vapour Pressure Deficit (VPD) driving stomatal conductance and biochemical processes of leaf photosynthetic rate in a subtropical evergreen coniferous plantation. Sustain 10:1–13. https://doi.org/10.3390/su10114063

    Article  CAS  Google Scholar 

  25. Wu G, Liu H, Hua L, Luo Q, Lin Y, He P et al (2018) Differential responses of stomata and photosynthesis to elevated temperature in two co-occurring subtropical forest tree species. Front Plant Sci 9:1–8. https://doi.org/10.3389/fpls.2018.00467

    Article  Google Scholar 

  26. Silva GAP, Gouvêa LRL, Verardi CK, de Resende MDV, Scaloppi EJ, de Gonçalves PS (2013) Genetic parameters and correlation in early measurement cycles in rubber trees. Euphytica 89:343–350. https://doi.org/10.1007/s10681-012-0751-8

    Article  Google Scholar 

  27. Chandrasekhar TR, Marattukalam JG, Mercykutty VC, Priyadarshan PM (2007) Age of yield stabilization and its implications for optimising selection and shortening breeding cycle in rubber (Hevea brasiliensis Muell. Arg.). Euphytica 156:67–75. https://doi.org/10.1007/s10681-006-9352-8

    Article  Google Scholar 

  28. Meenakumari T, Meenattoor JR, Thirunavoukkarasu M, Vinod KK, Krishan B, Gireesh T et al (2018) Dynamics of long-term adaptive responses in growth and rubber yield among Hevea brasiliensis genotypes introduced to a dry sub-humid climate of Eastern India. Ind Crops Prod 119:294–303. https://doi.org/10.1016/j.indcrop.2018.02.066

    Article  Google Scholar 

  29. Miguel AA, de Oliveira LEM, Cairo PAR, de Oliveira DM (2007) Photosynthetic behaviour during the leaf ontogeny of rubber tree clones [Hevea brasiliensis (Wild. ex. Adr. de Juss.) Muell. Arg.], in Lavras. MG Ciência e Agrotecnologia 31:91–97. https://doi.org/10.1590/S1413-70542007000100014

    Article  Google Scholar 

  30. Lieberei R (2007) South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Ann Bot 100:1125–1142. https://doi.org/10.1093/aob/mcm133

    Article  Google Scholar 

  31. Sterling A, Melgarejo LM (2018) Leaf gas exchange and chlorophyll a fluorescence in Hevea brasiliensis in response to Pseudocercospora ulei infection. Physiol Mol Plant Pathol 103:143–150. https://doi.org/10.1016/j.pmpp.2018.07.006

    Article  CAS  Google Scholar 

  32. Sterling A, Melgarejo LM (2020) Leaf spectral reflectance of Hevea brasiliensis in response to Pseudocercospora ulei. Eur J Plant Pathol 156:1063–1076. https://doi.org/10.1007/s10658-020-01961-7

    Article  CAS  Google Scholar 

  33. Carr MKV (2012) The water relations of rubber (Hevea Brasiliensis): a review. Exp Agric 48:176–193. https://doi.org/10.1017/S0014479711000901

    Article  Google Scholar 

  34. Sangsing K, Kasemsap P, Thanisawanyangkura S, Sangkhasila K, Gohet E, Thaler P et al (2004) Xylem embolism and stomatal regulation in two rubber clones (Hevea brasiliensis Muell. Arg.). Trees - Struct Funct 18:109–114. https://doi.org/10.1007/s00468-003-0286-7

    Article  Google Scholar 

  35. Ahmad B, Idris H, Sulong SH (2009) Early Selection of Promising High Yielding Hevea Progenies based on Selected Physiological and and Stomatal Characteristics. J Rubber Res 12:140–150

    Google Scholar 

  36. Priyadarshan PM, Gonçalves PS, Omokhafe KO (2009) Breeding Hevea rubber. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. Springer, New York, pp 469–522. https://doi.org/10.1007/978-0-387-71201-7_13

  37. d’Auzac J, Jacob J-L, Chrestin H (1989) Physiology of rubber tree latex: the laticiferous cell and latex—a model of cytoplasm. CRC Press, USA. https://doi.org/10.1201/9781351075695-2

  38. An F, Zou Z, Cai X, Wang J, Rookes J, Lin W et al (2015) Regulation of HbPIP2;3, a latex-abundant water transporter, is associated with latex dilution and yield in the rubber tree (Hevea brasiliensis muell. Arg.). PLoS ONE 10:1–21. https://doi.org/10.1371/journal.pone.0125595

    Article  CAS  Google Scholar 

  39. Kunjet S, Thaler P, Gay F, Chuntuma P, Sangkhasila K, Kasemsap P (2013) Effects of drought and tapping for latex production on water relations of Hevea brasiliensis trees. Kasetsart J - Nat Sci 47:506–515

    Google Scholar 

  40. Rivano F, Martinez M, Cevallos V, Cilas C (2010) Assessing resistance of rubber tree clones to Microcyclus ulei in large-scale clone trials in Ecuador: a less time-consuming field method. Eur J Plant Pathol 126:541–552. https://doi.org/10.1007/s10658-009-9563-7

    Article  Google Scholar 

  41. Cardoso SEA, Freitas TA, da Silva DC, Gouvêa LRL, Gonçalves PDS, Mattos CRR et al (2014) Comparison of growth, yield and related traits of resistant Hevea genotypes under high South American leaf blight pressure. Ind Crops Prod 53:337–349. https://doi.org/10.1016/j.indcrop.2013.12.033

    Article  CAS  Google Scholar 

  42. Confederación Cauchera Colombiana (CCC) (2015) Estado actual del gremio cauchero colombiano. Documento técnico interno, Bogotá

  43. Clément-Demange A, Nicolas D, Legnaté H, Rivano F, Le Guen V, Gnagne M et al (1995) Hévéa: stratégies de sélection. Plant Rech Développement 2:5–14

    Google Scholar 

  44. Sterling A, Rodríguez CH (2012) Ampliación de la base genética de caucho natural con proyección para la Amazonia Colombiana: fase de evaluación en periodo improductivo a gran escala. Instituto Amazónico de Investigaciones Científicas Sinchi, Bogotá

  45. Verbeke G, Molenberghs G (2010) Linear mixed models for longitudinal data, 1st edn. Springer, New York

  46. Pinheiro J, Bates D, Saikat D, Deepayan S, R Core Team (2013) Nlme: linear and nonlinear mixed effects models. R Package Version 3.1-109. https://CRAN.R-project.org/package=nlme

  47. R. Core Team (2018)R: a language and environment for statistical computing. R Foundation for statistical Computing, Vienna. http://www.r-project.org/

  48. Di Rienzo JA, Casanoves F, Balzarine MG, Gonzales L, Tablada M, Robledo CW (2018)Info Stat versión 2018. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Córdoba. http://www.infostat.com.ar

  49. Martínez-Vilalta J, Poyatos R, Aguadé D, Retana J, Mencuccini M (2014) A new look at water transport regulation in plants. New Phytol 204:105–115. https://doi.org/10.1111/nph.12912

    Article  Google Scholar 

  50. Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species–environment relationships. Freshw Biol 31:277–294. https://doi.org/10.1111/j.1365-2427.1994.tb01741.x

    Article  Google Scholar 

  51. Thioulouse J, Chessel D, Dolédec S, Olivier J-M (1997) ADE-4 a multivariate analysis and graphical display software. Stat Comput. https://doi.org/10.1023/A:1018513530268

    Article  Google Scholar 

  52. Bao JT, Wang J, Li XR, Zhang ZS, Su JQ (2015) Age-related changes in photosynthesis and water relations of revegetated Caragana korshinskii in the Tengger desert. Northern China Trees - Struct Funct 29:1749–1760. https://doi.org/10.1007/s00468-015-1255-7

    Article  CAS  Google Scholar 

  53. Chen JW, Zhang Q, Li XS, Cao KF (2010) Gas exchange and hydraulics in seedlings of Hevea brasiliensis during water stress and recovery. Tree Physiol 30:876–885. https://doi.org/10.1093/treephys/tpq043

    Article  CAS  Google Scholar 

  54. rcutt DM, Nilsen ET (1996) Physiology of plants under stress: soil and biotic factors. Wiley, New York

  55. Ayutthaya S, Do FC, Pannangpetch K, Junjittakarn J, Maeght JL, Rocheteau A et al (2011) Water loss regulation in mature Hevea brasiliensis: effects of intermittent drought in the rainy season and hydraulic regulation. Tree Physiol 31:751–762. https://doi.org/10.1093/treephys/tpr058

    Article  Google Scholar 

  56. Falqueto AR, da Silva Júnior RA, Gomes MTG, Martins JPR, Silva DM, Partelli FL (2017) Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. Sci Hortic 224:238–243. https://doi.org/10.1016/j.scienta.2017.06.019

    Article  CAS  Google Scholar 

  57. Renninger HJ, Phillips N (2010) Wet-vs. dry-season transpiration in an Amazonian rain forest palm Iriartea deltoidea. Biotropica 42:470–478. https://doi.org/10.1111/j.1744-7429.2009.00612.x

    Article  Google Scholar 

  58. Coupel-Ledru A, Lebon E, Christophe A, Gallo A, Gago P, Pantin F et al (2016) Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc Natl Acad Sci U S A 113:8963–8968. https://doi.org/10.1073/pnas.1600826113

    Article  CAS  Google Scholar 

  59. Sack L, John GP, Buckley TN (2018) ABA accumulation in dehydrating leaves is associated with decline in cell volume, not turgor pressure. Plant Physiol 176:489–493. https://doi.org/10.1104/pp.17.01097

    Article  CAS  Google Scholar 

  60. Rodrigues AL, da Silva Bertholdi AA, Mantoan LPB, Franco DM, Habermann G, de Almeida LFR (2019) Seasonal dynamics of the water relations and photochemical efficiency of Copaifera langsdorffii Desf. co-occurring in savanna and seasonal forest. Acta Physiol Plant 41:22. https://doi.org/10.1007/s11738-019-2816-y

    Article  Google Scholar 

  61. Sonali P, Nagesh Kumar D (2016) Spatio-temporal variability of temperature and potential evapotranspiration over India. J Water Clim Chang 7:810–822. https://doi.org/10.2166/wcc.2016.230

    Article  Google Scholar 

  62. Nugawela A, Long SP, Aluthhewage RK (1995) Genotypic variation in non-steady state photosynthetic carbon dioxide assimilation of Hevea brasiliensis. J Rubber Res 10:266–275

    CAS  Google Scholar 

  63. Sterling A, Martínez-Viuche EJ, Pimentel-Parra GA, Suárez-Córdoba YD, Fonseca-Restrepo JA, Virguez-Díaz YR (2019) Dynamics of adaptive responses in growth and resistance of rubber tree clones under South American leaf blight non-escape conditions in the Colombian Amazon. Ind Crops Prod 141:111811. https://doi.org/10.1016/j.indcrop.2019.111811

    Article  CAS  Google Scholar 

  64. Suarez YYJ, Molina JR, Furtado EL (2015) Clones de Hevea brasiliensis de alta productividad caracterizados por resistencia a Microcyclus ulei en jardin clonal en el magdalena medio colombiano. Summa Phytopathologica 41:115–120. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-54052015000200115&nrm=iso

Download references

Acknowledgements

The authors acknowledge the financial support for this research provided by FCTeI—SGR, Contract RC No.59 -2013 SINCHI Amazonian Institute of Scientific Research—Government of Caquetá, the University of the Amazon, and the Association of Rubber Reforesters and Cultivators of Caquetá Asoheca and Christopher King for reviewing the English version of this manuscript.

Funding

This study was funded by FCTeI—SGR, Contract 59/2013 Instituto Amazónico de Investigaciones Científicas SINCHI—Gobernación del Caquetá—Universidad de la Amazonía—Asociación de Reforestadores y Cultivadores de Caucho del Caquetá.

Author information

Authors and Affiliations

Authors

Contributions

AS led the investigation and the resource issues, designed the experiments and led the formal analyses. NR, EACA and YPCP measured the parameters in the field and laboratory. AS, NR and JCS led the writing, reviewing and editing processes. All the authors participated in the conceptualization, supervision, methodology, the writing and the original manuscript preparation.

Corresponding author

Correspondence to Armando Sterling.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors declare that they read and approved the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterling, A., Rodríguez, N., Clavijo-Arias, E.A. et al. Dynamics of water-use efficiency and status in promising Hevea brasiliensis genotypes: implications for clonal selection. J Rubber Res 24, 669–684 (2021). https://doi.org/10.1007/s42464-021-00120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-021-00120-9

Keywords

Navigation