Skip to main content

Advertisement

Log in

Co-production of hydrogen and carbon nanotubes from cracking of waste cooking oil model compound over Pt–Ni/SBA-15 catalysts

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Waste cooking oils (WCOs) are a cheap and rich source of carbon and hydrogen, and they exhibit great potential for the preparation of hydrogen gas and carbon nanomaterials. Here, we prepared three Pt–Ni/SBA-15 catalysts with Pt contents ranging from 0 to 2% to examine their activity in the catalytic cracking of WCO towards the production of hydrogen and carbon nanotubes (CNTs). A mixture of soybean oil, oleic acid and animal fat was used as a model compound of WCO, and the catalysts were characterised by inductively coupled plasma–optical emission spectrometry, scanning and transmission electron microscopy, X-ray diffraction, N2 adsorption–desorption isotherms, temperature programmed reduction, thermogravimetric analysis and Raman spectroscopy. The effect of Pt loading and cracking temperature on the hydrogen production and the quality of CNTs was also evaluated. Among the prepared catalysts, 2%Pt–30%Ni/SBA-15 showed excellent catalytic activity at 750 °C, affording a maximum hydrogen content of 66.2 vol%, while CNTs with diameters of 20–100 nm and high crystallinity, oxidation stability, graphitisation and purity were also prepared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. J. Chi, H. Yu, Chin. J. Catal. 39(3), 390–394 (2018)

    CAS  Google Scholar 

  2. Y. Lei, C. Yang, J. Hou, F. Wang, S. Min, X. Ma, Z. Jin, J. Xu, G. Lu, K.-W. Huang, Appl. Catal. B 216, 59–69 (2017)

    CAS  Google Scholar 

  3. P. Nikolaidis, A. Poullikkas, Renew. Sustain. Energy Rev. 67, 597–611 (2017)

    CAS  Google Scholar 

  4. D. Torres, J. Pinilla, I. Suelves, Appl. Catal. A 559, 10–19 (2018)

    CAS  Google Scholar 

  5. S. Zhou, Y. Wei, S. Zhang, B. Li, H. Wang, Y. Yang, M. Barati, J. Cleaner. Prod. 236, 117668 (2019)

    CAS  Google Scholar 

  6. M. Pudukudy, Z. Yaakob, Q. Jia, M.S. Takriff, New J. Chem. 42(18), 14843–14856 (2018)

    CAS  Google Scholar 

  7. M. Pudukudy, Z. Yaakob, Z.S. Akmal, Appl. Surf. Sci. 353, 127–136 (2015)

    CAS  Google Scholar 

  8. G.D.B. Nuernberg, H.V. Fajardo, E.L. Foletto, S.M. Hickel-Probst, N.L. Carreño, L.F. Probst, J. Barrault, Catal. Today 176(1), 465–469 (2011)

    CAS  Google Scholar 

  9. W. Liu, H. Yuan, Int. J. Energy Res. 44(14), 11564–11582 (2020)

    CAS  Google Scholar 

  10. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120(24), 6024–6036 (1998)

    CAS  Google Scholar 

  11. N. Anand, P. Ramudu, K.H.P. Reddy, K.S.R. Rao, B. Jagadeesh, V.S.P. Babu, D.R. Burri, Appl. Catal. A 454, 119–126 (2013)

    CAS  Google Scholar 

  12. W. Chen, Z. Xie, H. Liang, X. Zhou, W. Hu, X. Shu, RSC Adv. 10(6), 3175–3183 (2020)

    CAS  Google Scholar 

  13. S. He, S. He, L. Zhang, X. Li, J. Wang, D. He, J. Lu, Y. Luo, Catal. Today 258, 162–168 (2015)

    CAS  Google Scholar 

  14. C. Crisafulli, S. Scirè, S. Minicò, L. Solarino, Appl. Catal. A 225(1–2), 1–9 (2002)

    CAS  Google Scholar 

  15. X. Cai, R. Lin, D.D. Shen, Y. Zhu, ACS Appl. Mater. Inter. 11(33), 1–17 (2019)

    Google Scholar 

  16. H. Sharma, A. Dhir, Fuel 279, 118389 (2020)

    CAS  Google Scholar 

  17. A. Rategarpanah, F. Meshkani, Y. Wang, H. Arandiyan, M. Rezaei, Energy Convers. Manag. 166, 268–280 (2018)

    CAS  Google Scholar 

  18. D.G. Araiza, D.G. Arcos, A. Gomez, G. Díaz, Catal. Today 360(5), 46 (2021). https://doi.org/10.1016/j.cattod.2019.06.018

    Article  CAS  Google Scholar 

  19. L. Zhou, M. Harb, M.N. Hedhili, N. Al Mana, J.M. Basset, RSC Adv. 7(7), 4078–4082 (2017)

    CAS  Google Scholar 

  20. Y. Yan, Y. Zhang, T. Jiang, T. Xiao, P.P. Edwards, F. Cao, RSC Adv. 7(61), 38251–38256 (2017)

    CAS  Google Scholar 

  21. L. Li, Y. Wu, J. Lu, C. Nan, Y. Li, Chem. Comm. 49(68), 7486–7488 (2013)

    CAS  PubMed  Google Scholar 

  22. S. Takenaka, Y. Shigeta, E. Tanabe, K. Otsuka, J. Phys. Chem. B 108(23), 7656–7664 (2004)

    CAS  Google Scholar 

  23. M. Pudukudy, Z. Yaakob, M.S. Takriff, Appl. Surf. Sci. 356, 1320–1326 (2015)

    CAS  Google Scholar 

  24. I. Shimada, S. Kato, N. Hirazawa, Y. Nakamura, H. Ohta, K. Suzuki, T. Takatsuka, Ind. Eng. Chem. Res. 56(1), 75–86 (2017)

    CAS  Google Scholar 

  25. V. R. Wiggers, R. F. Beims, L. Ender, E. L. Simionatto, H. F. Meier, (Inech Open Ltd., London, 2017)

  26. V. Parmon, Catal. Lett. 42(3–4), 195–199 (1996)

    CAS  Google Scholar 

  27. S. Pinjari, M.K. Kumaravelan, V.C. Peddy, S. Gandham, J. Patruni, S. Velluru, P. Kumar, Int. J. Hydrog. Energy 43(5), 2781–2793 (2018)

    CAS  Google Scholar 

  28. D. Chen, K.O. Christensen, E. Ochoa-Fernández, Z. Yu, B. Tøtdal, N. Latorre, A. Monzón, A. Holmen, J. Catal. 229(1), 82–96 (2005)

    CAS  Google Scholar 

  29. B. Michalkiewicz, J. Majewska, Int. J. Hydrog. Energy 39(9), 4691–4697 (2014)

    CAS  Google Scholar 

  30. B.M. Al-Swai, N. Osman, M.S. Alnarabiji, A.A. Adesina, B. Abdullah, Ind. Eng. Chem. Res. 58(2), 539–552 (2018)

    Google Scholar 

  31. R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite, J. Catal. 30(1), 86–95 (1973)

    CAS  Google Scholar 

  32. J. Pinilla, R. Utrilla, R. Karn, I. Suelves, M. Lázaro, R. Moliner, A. García, J. Rouzaud, Int. J. Hydrog. Energy 36(13), 7832–7843 (2011)

    CAS  Google Scholar 

  33. S. Shokry, A. El Morsi, M. Sabaa, R. Mohamed, H. El Sorogy, Egypt. J. Pet. 23(2), 183–189 (2014)

    Google Scholar 

  34. A.E. Awadallah, A.A. Aboul-Enein, A.K. Aboul-Gheit, Energy Convers. Manag. 77, 143–151 (2014)

    CAS  Google Scholar 

  35. M. Pudukudy, Z. Yaakob, M.S. Takriff, Energy Convers. Manag. 126, 302–315 (2016)

    CAS  Google Scholar 

  36. X. Yin, L. He, S.S.A. Syed-Hassan, W. Deng, P. Ling, Y. Xiong, X. Hu, S. Su, S. Hu, Y. Wang, Fuel 280, 118601 (2020)

    CAS  Google Scholar 

  37. A. Awadallah, A. Aboul-Enein, D. El-Desouki, A. Aboul-Gheit, Appl. Surf. Sci. 296, 100–107 (2014)

    CAS  Google Scholar 

  38. S. Kawasaki, Y. Matsuoka, T. Yokomae, Y. Nojima, F. Okino, H. Touhara, H. Kataura, Carbon 43(1), 37–45 (2005)

    CAS  Google Scholar 

  39. M. Pudukudy, A. Kadier, Z. Yaakob, M.S. Takriff, Int. J. Hydrog. Energy 41(41), 18509–18521 (2016)

    CAS  Google Scholar 

  40. A. Awadallah, W. Ahmed, M.N. El-Din, A. Aboul-Enein, Appl. Surf. Sci. 287, 415–422 (2013)

    CAS  Google Scholar 

  41. A.S. Al Fatesh, S.O. Kasim, A.A. Ibrahim, A.S. Al-Awadi, A.E. Abasaeed, A.H. Fakeeha, A.E. Awadallah, Renew. Energy 155, 969 (2020). https://doi.org/10.1016/j.renene.2020.04.038

    Article  CAS  Google Scholar 

  42. J. Gong, J. Liu, Z. Jiang, X. Chen, X. Wen, E. Mijowska, T. Tang, Appl. Catal. B 152, 289–299 (2014)

    Google Scholar 

  43. D. Yao, C. Wu, H. Yang, Y. Zhang, M.A. Nahil, Y. Chen, P.T. Williams, H. Chen, Energy Convers. Manag. 148, 692–700 (2017)

    CAS  Google Scholar 

  44. T. Batakliev, I. Petrova-Doycheva, V. Angelov, V. Georgiev, E. Ivanov, R. Kotsilkova, M. Casa, C. Cirillo, R. Adami, M. Sarno, Appl. Sci. 9(3), 469 (2019)

    CAS  Google Scholar 

  45. D. Yao, Y. Zhang, P.T. Williams, H. Yang, H. Chen, Appl. Catal. B 221, 584–597 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of Ningxia (Grant No. 2020AAC02027), China; the National Natural Science Foundation of China (Grant No. 21962001), China; the Ningxia Scientific and Technological Innovation Leading Personnel Training (Grant No. KJT2017006), China; the talent highland of research and development of high-value utilization technology of low-quality resources in Ningxia, China are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

WL: Writing-reviewing and editing, specifically performing the experiments, data collection and analysis. GZ: Specifically performing the experiments, data collection and analysis. SH: Data collection and analysis. HY: Conceptualization and methodology. WH: Material preparation.

Corresponding author

Correspondence to Hong Yuan.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhang, G., Hao, S. et al. Co-production of hydrogen and carbon nanotubes from cracking of waste cooking oil model compound over Pt–Ni/SBA-15 catalysts. J Porous Mater 29, 49–61 (2022). https://doi.org/10.1007/s10934-021-01147-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01147-4

Keywords

Navigation