Skip to main content
Log in

Recycled two-stage estimation in nonlinear mixed effects regression models

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

We consider a re-sampling scheme for estimation of the population parameters in the mixed-effects nonlinear regression models of the type used, for example, in clinical pharmacokinetics. We provide a two-stage estimation procedure which resamples (or recycles), via random weightings, the various parameter's estimates to construct consistent estimates of their respective sampling distributions. In particular, we establish under rather general distribution-free assumptions, the asymptotic normality and consistency of the standard two-stage estimates and of their resampled version and demonstrate the applicability of our proposed resampling methodology in a small simulation study. A detailed example based on real clinical pharmacokinetic data is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Derived data supporting the findings of this study are available as Theoph under the R package.

References

  • Adeniyi I, Yahya WB, Ezenweke C (2018) A note on pharmacokinetics modelling of theophylline concentration data on patients with respiratory diseases. Turk Klin J Biostat. 10(1):27–45

    Article  Google Scholar 

  • Bar-Lev SK, Boukai B (2015) Recycled estimation of population pharmacokinetics models. Adv Appl Stat 47:247–263

    MATH  Google Scholar 

  • Bates DM, Watts DG (2007) Nonlinear regression analysis and its applications. Wiley, New York

    MATH  Google Scholar 

  • Bickel PJ, Freedman DA (1981) Some asymptotic theory for the bootstrap. Ann Stat 9:1196–1217

    Article  MathSciNet  MATH  Google Scholar 

  • Boeckmann AJ, Sheiner LB, Beal SL (1994) NONMEM users guide: part V, NONMEM project group. University of California, San Francisco

    Google Scholar 

  • Boukai B, Zhang Y (2018) Recycled least squares estimation in nonlinear regression. arXiv Preprint (2018)ArXiv:1812.06167 [stat.ME]

  • Chatterjee S, Bose A (2005) Generalized bootstrap for estimating equations. Ann Stat 33:414–436

    Article  MathSciNet  MATH  Google Scholar 

  • Davidian M, Gallant AR (1993a) The non-linear mixed effects model with a smooth random effects density. Biometrika 80:475–488

    Article  MathSciNet  MATH  Google Scholar 

  • Davidian M, Giltinan DM (1993b) Some simple methods for estimating intra-individual variability in non-linear mixed effects models. Biometrics 49:59–73

    Article  Google Scholar 

  • Davidian M, Giltinan DM (1995) Monographs on statistics and applied probability. Nonlinear models for repeated measurements data. Chapman and Hall, London

    Google Scholar 

  • Davidian M, Giltinan DM (2003) Nonlinear models for repeated measurement data: an overview and update. J Agric Biol Environ Stat 8:387–419

    Article  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Efron B (1979) Bootstrap methods: another Look at the Jackknife. Ann Stat 7:1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Efron B, Tibshirani R (1994) An introduction to the bootstrap. Chapman and Hall, New York

    Book  MATH  Google Scholar 

  • Eicker F (1963) Asymptotic normality and consistency of the least squares estimators for families of linear regressions. Ann Math Stat 34:447–456

    Article  MathSciNet  MATH  Google Scholar 

  • Flachaire E (2005) Bootstrapping heteroskedastic regression models: wild bootstrap vs pairs bootstrap. CSDA 49:361–476

    MathSciNet  MATH  Google Scholar 

  • Fan J, Mei C (1991) The convergence rate of randomly weighted approximation for errors of estimated parameters of AR(I) models. Xian Jiaotong DaXue Xuebao 25:1–6

    MathSciNet  Google Scholar 

  • Freedman DA (1981) Bootstrapping regression models. Ann Stat 9:1218–1228

    Article  MathSciNet  MATH  Google Scholar 

  • Hartigan JA (1969) Using subs ample values as typical value. J Am Stat Assoc 64:1303–1317

    Article  MathSciNet  Google Scholar 

  • Ito K, Nisio M (1968) On the convergence of sums of independent Banach space valued random variables. Osaka J Math 5:33–48

    MathSciNet  MATH  Google Scholar 

  • Jennrich IR (1969) Asymptotic properties of non-linear least squares estimatiors. Ann Stat 40:633–643

    Article  MATH  Google Scholar 

  • Kurada RR, Chen F (2018) Fitting compartment models using PROC NLMIXED. Paper SAS1883-2018, https://bit.ly/2Cds4cT

  • Lo AY (1987) A large sample study of the Bayesian bootstrap. Ann Stat 15:360–375

    Article  MathSciNet  MATH  Google Scholar 

  • Lo AY (1991) Bayesian bootstrap clones and a biometry function. Sankhya A 53:320–333

    MathSciNet  MATH  Google Scholar 

  • Lindstrom MJ, Bates DM (1990) Non-linear mixed effects models for repeated measures data. Biometrics 46:673–687

    Article  MathSciNet  Google Scholar 

  • Mallet A (1986) A maximum likelihood estimation method for random coefficient regression models. Biometrika 73:645–656

    Article  MathSciNet  MATH  Google Scholar 

  • Mammen E (1989) Asymptotics with increasing dimension for robust regression with applications to the bootstrap. Ann Stat 17:382–400

    Article  MathSciNet  MATH  Google Scholar 

  • Mason DM, Newton MA (1992) A rank statistics approach to the consistency of a general bootstrap. Ann Stat 20:1611–1624

    Article  MathSciNet  MATH  Google Scholar 

  • Newton MA, Raftery AE (1994) Approximate Bayesian inference with the weighted likelihood bootstrap (with discussion). J R Stat Soc Ser B 56:3–48

    MATH  Google Scholar 

  • Praestgaard J, Wellner JA (1993) Exchangeably weighted bootstraps of the general empirical process. Ann Probab 21:2053–2086

    Article  MathSciNet  MATH  Google Scholar 

  • Quenouille M (1949) Approximate tests of correlation in time-series. Math Proc Cambridge Philos Soc 45(03):483

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 3-900051-07-0 (http://www.R-project.org/)

  • Rao CR, Zhao L (1992) Approximation to the distribution of Mestimates in linear models by randomly weighted bootstrap. Sankhya A 54:323–331

    MATH  Google Scholar 

  • Rubin DB (1981) The Bayesian bootstrap. Ann Stat 9:130–134

    Article  MathSciNet  Google Scholar 

  • Shao J, Tu DS (1995) The Jackknife and Bootstrap. Springer-Verlag, New York. Singh K (1981) On the asymptotic accuracy of Efron's bootstrap. Ann Stat 9:1187–1195

  • Sheiner LB, Rosenberg B, Melmon KL (1972) Modelling of individual pharmacokinetics for computer-aided drug dosage. Comput Biomed Res 5:441–459

    Article  Google Scholar 

  • Sheiner LB, Beal SL (1981) Evaluation of methods for estimating population pharmacokinetic parameters. II. Bioexponential model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 9:635–651

    Article  Google Scholar 

  • Sheiner LB, Beal SL (1982) Bayesian individualization of pharmacokinetics: simple implementation and comparison with non-Bayesian methods. J Pharm Sci 71(12):1344–1348

    Article  Google Scholar 

  • Sheiner LB, Beal SL (1983) Evaluation of methods for estimating population pharmacokinetic parameters. III. Monoexponential model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 11:303–319

    Article  Google Scholar 

  • Singh K (1981) On the asymptotic accuracy of Efron's bootstrap. Ann Stat 9:1187–1195

    Article  MathSciNet  MATH  Google Scholar 

  • Steimer JL, Mallet A, Golmard JL, Boisvieux JF (1984) Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the non-linear mixed effect model. Drug Metab Rev 15:265–292

    Article  Google Scholar 

  • Vonesh EF, Carter RL (1992) Mixed effects non-linear regression for unbalanced repeated measures. Biometrics 48:1–17

    Article  MathSciNet  Google Scholar 

  • Weng CS (1989) On a second order property of the Bayesian bootstrap. Ann Stat 17:705–710

    Article  MathSciNet  MATH  Google Scholar 

  • Wu CF (1981) Asymptotic theory of nonlinear least squares estimation. Ann Stat 9:501–513

    Article  MathSciNet  MATH  Google Scholar 

  • Wu CFJ (1986) Jackknife, bootstrap and other resampling methods in regression analysis (with discussions). Ann Stat 14:1261–1350

    MATH  Google Scholar 

  • Yu K (1988) The random weighting approximation of sample variance estimates with applications to sampling survey. Chin J Appl Prob Stat 3:340–347

    Google Scholar 

  • Zhang Y, Boukai B (2019) Recycled estimates for nonlinear regression models. Stat 8:e230

    Article  MathSciNet  Google Scholar 

  • Zhang Y, Boukai B (2019) Recycled two-stage estimation in nonlinear mixed effects regression models, arXiv:1902.00917

  • Zheng Z (1987) Random weighting methods. Acta Math Appl Sinica 10:247–253

    MathSciNet  MATH  Google Scholar 

  • Zheng Z, Tu D (1988) Random weighting method in regression models. Sci China Ser A-Math Phys Astron Technol Sci 31(12):1442–1459

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the Editor and the anonymous referees for their careful review, useful comments and helpful suggestions that have led to much improvements of this paper.

Funding

This research was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang.

Ethics declarations

Conflict of interest

No conflicts of interest.

Code availability

The code supporting this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

7. Appendix

7. Appendix

1.1 7.1. Technical details and proofs, the STS estimation case

In this section of the "Appendix" we provide the technical results needed for the proofs of Theorems 1 and 2 on the STS estimator \({\hat{\theta }}_{{STS}}\) in the hierarchical nonlinear regression model. In the sequel, we let \(\phi _{1ij}(\theta ):=\phi _{ij}^{'}(\theta )\) (see (11)), and set K to denote a generic constant. Recall that (see Assumption A(1)),

$$\begin{aligned} a_{n_i}^{2}:=\sigma ^2\sum _{j=1}^{n_i}E(f^{'2}_{ij}(\theta _0+b_i))\rightarrow \infty \ \ as \ \ n_i\rightarrow \infty . \end{aligned}$$

Lemma 1

Under the conditions of Assumption A, for some \(K>0\)

$$\begin{aligned} a_{n_i}^{-2}\underset{|t|\le K}{\sup }\sum _{j=1}^{n_i}\phi _{1ij}(b_{i1})-\frac{1}{\sigma ^2}\rightarrow 0 \ \ a.s., \end{aligned}$$

where \(b_{i1}:=b_{1n_{i}}(t)\) is a sequence such that \(\underset{|t|\le K}{\sup }|b_{i1}-b_i-\theta _0|\rightarrow 0,\ \ \ a.s.,\) as \(n_i\rightarrow \infty \).

Proof of Lemma 1

Since \(\phi _{1ij}(\theta ):=\phi _{ij}^{'}(\theta )\), we have

$$\begin{aligned} \phi _{1ij}(\theta )\equiv f^{'2}_{ij}(\theta )-\epsilon _{ij}f_{ij}^{''}(\theta )-(f_{ij}(\theta _0+b_i)-f_{ij}(\theta ))f_{ij}^{''}(\theta ). \end{aligned}$$

Accordingly, we first note that,

$$\begin{aligned} \left| a_{n_i}^{-2}\underset{|t|\le K}{\sup }\sum _{j=1}^{n_i}\phi _{1ij}(b_{i1})-\frac{1}{\sigma ^2}\right|\le & \left| a_{n_i}^{-2}\underset{|t|\le K}{\sup }\sum _{j=1}^{n_i}f^{'2}_{ij}(b_{i1})-\frac{1}{\sigma ^2}\right| \\ &\quad+ a_{n_i}^{-2}\underset{|t|\le K}{\sup }\left| \sum _{j=1}^{n_i}\epsilon _{ij}f_{ij}^{''}(b_{i1})\right| \\&\quad+ a_{n_i}^{-2}\underset{|t|\le K}{\sup }\left| \sum _{j=1}^{n_i}(f_{ij}(\theta _0+b_i)-f_{ij}(b_{i1}))f_{ij}^{''}(b_{i1})\right| . \end{aligned}$$

By Assumption A (3), we have \( a_{n_i}^{-2}\underset{|t|\le K}{\sup }\sum _{j=1}^{n_i}f^{'2}_{ij}(b_{i1})-\frac{1}{\sigma ^2}\rightarrow 0 \ \ a.s., \) and by Assumption A (2) and Corollary A in Wu (1981), we also have,

$$\begin{aligned} a_{n_i}^{-2}\underset{|t|\le K}{\sup }\left| \sum _{j=1}^{n_i}\epsilon _{ij}f_{ij}^{''}(b_{i1})\right| \rightarrow 0\ \ a.s.. \end{aligned}$$

Finally, the last term converge to 0 a.s. by Assumption A, an application of Cauchy-Schwarz inequality and Corollary A in Wu (1981). Thus we have

$$\begin{aligned} a_{n_i}^{-2}\underset{|t|\le K}{\sup }\sum _{j=1}^{n_i}\phi _{1ij}(b_{i1})-\frac{1}{\sigma ^2}\rightarrow 0 \ \ a.s.. \end{aligned}$$

. \(\square \)

Lemma 2

Let \(X_i\) be a sequence of random variables bounded in probability and let \(Y_i\) be a sequence of random variables which satisfies \(\frac{1}{n}\sum _{i=1}^{n} |Y_i|\rightarrow 0\) in probability. Then \( \frac{1}{n}\sum _{i=1}^{n} X_iY_i\overset{p}{\rightarrow }0. \)

Proof of Lemma 2

Since \(X_i\) is bounded in probability, for any \(\epsilon >0\), there is \(K_\epsilon \) such that with sufficient large i, \( P(|X_i|>K_\epsilon )<\epsilon . \) Then

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }P(|\frac{1}{n}\sum _{i=1}^{n} X_iY_i|>\epsilon )= & \underset{n\rightarrow \infty }{\lim }\left[ P(|\frac{1}{n}\sum _{i=1}^{n} X_iY_i|>\epsilon , |X_i|<K_\epsilon )\right] \\+ & \underset{n\rightarrow \infty }{\lim }\left[ P(|\frac{1}{n}\sum _{i=1}^{n} X_iY_i|>\epsilon , |X_i|>K_\epsilon )\right] \\\le & \underset{n\rightarrow \infty }{\lim }P(\frac{1}{n}\sum _{i=1}^{n} |\frac{X_i}{K_\epsilon }Y_i|>\frac{\epsilon }{K_\epsilon }, |X_i|<K_\epsilon )+\epsilon \\\le & \underset{n\rightarrow \infty }{\lim }P(\frac{1}{n}\sum _{i=1}^{n} |Y_i|>\frac{\epsilon }{K_\epsilon }, |X_i|<K_\epsilon )+\epsilon =\epsilon , \end{aligned}$$

from which the desired result follows. \(\square \)

Lemma 3

There exists a \(K>0\) such that for any \(\epsilon >0\), for any i,

$$\begin{aligned} P\left[ \left| a_{n_i}^{-1}\sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i)\right| >K\right] <\frac{\epsilon }{2}. \end{aligned}$$

Proof of Lemma 3

Since \(\epsilon _{ij}\) and \(b_i\) are independent, for each \(i=1, \dots , N\), we have that for any \(j_1\ne j_2\),

$$\begin{aligned} E(\phi _{ij_1}(\theta _0+b_i)\phi _{ij_2}(\theta _0+b_i))= & E[E(\phi _{ij_1}(\theta _0+b_i)\phi _{ij_2}(\theta _0+b_i)|b_i)]\\= & E[E(\epsilon _{ij_1}\epsilon _{ij_2}f^{'}_{ij_1}(\theta _0+b_i)f^{'}_{ij_2}(\theta _0+b_i)|b_i)]\\= & E[E(\epsilon _{ij_1})E(\epsilon _{ij_2})f^{'}_{ij_1}(\theta _0+b_i)f^{'}_{ij_2}(\theta _0+b_i)]\\= & 0. \end{aligned}$$

Similarly,

$$\begin{aligned} E(\phi _{ij_1}(\theta _0+b_i))= & E[E(\epsilon _{ij_1}f^{'}_{ij_1}(\theta _0+b_i)|b_i)] = E[E(\epsilon _{ij_1})f^{'}_{ij_1}(\theta _0+b_i)]=0.\\ \end{aligned}$$

Hence, we have, \(E(\phi _{ij_1}(\theta _0+b_i)\phi _{ij_2}(\theta _0+b_i))=E(\phi _{ij_1}(\theta _0+b_i))E(\phi _{ij_2}(\theta _0+b_i)).\) To conclude that,

$$\begin{aligned} Var\left( \sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i)\right)= & \sum _{j=1}^{n_i}Var(\phi _{ij}(\theta _0+b_i))\\= & \sum _{j=1}^{n_i}Var(\epsilon _{ij}f^{'}_{ij}(\theta _0+b_i))\\= & \sum _{j=1}^{n_i}E(\epsilon ^2_{ij})E(f^{'2}_{ij}(\theta _0+b_i))\\= & \sigma ^2\sum _{j=1}^{n_i}E(f^{'2}_{ij}(\theta _0+b_i))\equiv a_{n_i}^2. \end{aligned}$$

Accordingly, there exists a \(K>0\) such that for any \(\epsilon >0\), for any i,

$$\begin{aligned} P\left[ \left| a_{n_i}^{-1}\sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i)\right| >K\right] <\frac{\epsilon }{2}. \end{aligned}$$

\(\square \)

We are now ready to prove Theorem 1

Proof of Theorem  1

Let

$$\begin{aligned} S_{n_i}(t):= a_{n_i}^{-1}\sum _{j=1}^{n_i}\left[ \phi _{ij}(\theta _0+b_i+a_{n_i}^{-1}t)-\phi _{ij}(\theta _0+b_i)\right] -\frac{t}{\sigma ^2}. \end{aligned}$$
(16)

Next we will show for any given constant K,

$$\begin{aligned} \underset{|t|\le K}{sup}|S_{n_i}(t)|\rightarrow 0\ \ a.s. \end{aligned}$$
(17)

By a Taylor expansion, \( \phi _{ij}(\theta _0+b_i+a_{n_i}^{-1}t)=\phi _{ij}(\theta _0+b_i)+\phi _{1ij}(b_{i1})a_{n_i}^{-1}t, \ \ \) where \(b_{i1}=\theta _0+b_i+ca_{n_i}^{-1}t\) for some \(0<c<1\). Accordingly we obtain that,

$$\begin{aligned} \underset{|t|\le K}{\sup }|S_{n_i}(t)|= & \underset{|t|\le K}{\sup } \left| a_{n_i}^{-1}\sum _{j=1}^{n_i}\phi _{1ij}(b_{i1})a_{n_i}^{-1}t-\frac{t}{\sigma ^2} \right| \\= & K\left| a_{n_i}^{-2}\underset{|t|\le K}{\sup }\sum _{j=1}^{n_i}\phi _{1ij}(b_{i1})-\frac{1}{\sigma ^2}\right| .\\ \end{aligned}$$

By Lemma 1, \( a_{n_i}^{-2}\underset{|t|\le K}{\sup }\sum _{j=1}^{n_i}\phi _{1ij}(b_{i1})-\frac{1}{\sigma ^2}\rightarrow 0\ \ a.s. \) Thus, we have proved (17). Next, by (16),

$$\begin{aligned} A_{n_i}(t):=a_{n_i}^{-1}t\sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i+a_{n_i}^{-1}t)= tS_{n_i}(t)+a_{n_i}^{-1}t\sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i)+\frac{t^2}{\sigma ^2}. \end{aligned}$$

Thus,

$$\begin{aligned} \underset{|t|=K}{\inf }A_{n_i}(t)\ge -K\underset{|t|=K}{\sup }|S_{n_i}(t)|-Ka_{n_i}^{-1}\left| \sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i)\right| +\frac{K^2}{\sigma ^2}. \end{aligned}$$

By lemma 3 there exists a \(K>0\) such that for any \(\epsilon >0\), for any i,

$$\begin{aligned} P\left[ \left| a_{n_i}^{-1}\sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i)\right| >K\right] <\frac{\epsilon }{2}. \end{aligned}$$
(18)

So that by (18) and (17) we may choose K large enough such that for sufficiently large \(n_i\),

$$\begin{aligned} P(\underset{|t|=K}{\inf }A_{n_i}(t)\ge 0)\ge & P(\underset{|t|=K}{\sup }|S_{n_i}(t)|+a_{n_i}^{-1}\left| \sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i)\right| \le \frac{K}{\sigma ^2})\\= & 1-P \left(\underset{|t|=K}{\sup }|S_{n_i}(t)|+a_{n_i}^{-1}\left| \sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i)\right|>\frac{K}{\sigma ^2}\right)\\\ge & 1-P \left(\underset{|t|=K}{\sup }|S_{n_i}(t)|>\frac{K}{4\sigma ^2})-P(a_{n_i}^{-1}\left| \sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i)\right| >\frac{K}{4\sigma ^2}\right)\\\ge & 1-\epsilon . \end{aligned}$$

By the continuity of \(\sum _{j=1}^{n_i}\phi _{ij}(\theta )\) in \(\theta \), we have, for sufficiently large \(n_i\), that there exists a constant K such that the equation

$$\begin{aligned} \sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i+a_{n_i}^{-1}t)=0, \end{aligned}$$

has a root \(t=T_{ni}\) in \(|t|\le K\) with probability larger than \(1-\epsilon \). That is, we have \({{\hat{\theta }}_{ni}}=\theta _0+b_i+a_{ni}^{-1}T_{ni}, \) where \(|T_{ni}|<K\) in probability. Thus, by Lemma 2,

$$\begin{aligned} {\hat{\theta }}_{{STS}}-\theta _0=\frac{1}{N}\sum _{i=1}^{N}b_i +\frac{1}{N}\sum _{i=1}^{N}a_{ni}^{-1}T_{ni}\overset{p}{\rightarrow }0. \end{aligned}$$

\(\square \)

For establishing the asymptotic normality result as stated in Theorem 2, we need the following Lemma.

Lemma 4

Under the conditions of Assumptions A,

$$\begin{aligned} \frac{1}{\sqrt{N}}\sum _{i=1}^{N}a_{n_i}^{-2}\sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i)\overset{p}{\rightarrow } 0. \end{aligned}$$

Proof of Lemma 4

Let \( X_{ni}:= a_{n_i}^{-1}\sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i), \) where, by proof of Theorem 1 we have \(E(X_{ni})=0\) and \(Var(X_{ni})=1\). Thus,

$$\begin{aligned} \frac{1}{\sqrt{N}}\sum _{i=1}^{N}a_{n_i}^{-2}\sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i)= \frac{1}{\sqrt{N}}\sum _{i=1}^{N}a_{n_i}^{-1}X_{ni}. \end{aligned}$$

Now, for any \(\epsilon >0\),

$$\begin{aligned} P(\left| \frac{1}{\sqrt{N}}\sum _{i=1}^{N}a_{n_i}^{-1}X_{ni}\right| >\epsilon )\le \frac{\sum _{i=1}^{N}\frac{1}{a_{ni}^2}}{N\epsilon ^2}\rightarrow 0. \end{aligned}$$

Accordingly, we have \( \frac{1}{\sqrt{N}}\sum _{i=1}^{N}a_{n_i}^{-2}\sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i)\overset{p}{\rightarrow } 0, \) as required. \(\square \)

Proof of Theorem 2

We first note that by Lemma 1 and (16),

$$\begin{aligned} {{\hat{\theta }}_{ni}}-\theta _0-b_i=-a_{ni}^{-2}\sigma ^2\sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i)- a_{n_i}^{-1}\sigma ^2S_{n_i}(T_{ni}). \end{aligned}$$

Thus,

$$\begin{aligned} {\hat{\theta }}_{{STS}}-\theta _0= \frac{1}{N}\sum _{i=1}^{N}b_i -\frac{\sigma ^2}{N}\sum _{i=1}^{N}a_{n_i}^{-2}\sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i)-\frac{\sigma ^2}{N}\sum _{i=1}^{N}a_{n_i}^{-1}S_{n_i}(T_{ni}). \end{aligned}$$

Recall that \(\sum _{i=1}^{N}b_i/N\rightarrow E(b_1)\equiv 0\). In view of (17) and since, \(\underset{N,ni\rightarrow \infty }{\lim } N/a_{ni}^2<\infty \), we have

$$\begin{aligned} \frac{\sigma ^2}{\sqrt{N}}\sum _{i=1}^{N}a_{n_i}^{-1}S_{n_i}(T_{ni})\rightarrow 0 \ \ a.s.. \end{aligned}$$

Finally, from Lemma 4,

$$\begin{aligned} \frac{1}{\sqrt{N}}\sum _{i=1}^{N}a_{n_i}^{-2}\sum _{j=1}^{n_i}\phi _{ij}(\theta _0+b_i)\overset{p}{\rightarrow } 0. \end{aligned}$$

Thus, it follows that \( \lambda ^{-1}\sqrt{N}({\hat{\theta }}_{{STS}}-\theta _0)\Rightarrow {{\mathcal {N}}}(0,1). \) \(\square \)

1.2 7.2. Technical details and proofs, the recycled STS estimation case

In this section of the "Appendix" we provide the technical results needed for the proofs of Theorems 3 and 4 on the recycled STS estimator, \({\hat{\theta }}^*_{{RTS}}\), in the hierarchical nonlinear regression model. We begin with a re-statement of Lemma 2 from Boukai and Zhang (2018) which is concerned with the general random weights under Assumption W.

Lemma 5

Let \(\mathbf{w}_n=(w_{1:n}, w_{1:n}, \dots , w_{n:n})^\mathbf{t}\) be random weights that satisfy the conditions of Assumption W. Then With \(W_{i}=(w_{i:n}-1)/\tau _n, \ i=1\dots , n\) and \({\bar{W}}_n:=\frac{1}{n}\sum _{i=1}^{n}W_i\) we have, as \(n\rightarrow \infty \), that \((i)\ \ \frac{1}{n}\sum _{i=1}^{n}W_i\overset{p^*}{\rightarrow }0\) \((ii)\ \ \frac{1}{n}\sum _{i=1}^{n}W_i^2\overset{p^*}{\rightarrow }1\) and hence \((iii)\ \ \frac{1}{n}\sum _{i=1}^{n}(W_i-\bar{W}_n)^2\overset{p^*}{\rightarrow }1\).

Lemma 6

Under the conditions of Assumption W, \( \frac{1}{n}\sum _{i=1}^{n}w_{i:n}-1\overset{p^*}{\rightarrow }0 , \) Further, let \(\mathbf{u}_n=(u_1,u_2, \dots , u_n)^\mathbf{t}\) denote a vector of n i.i.d random variables that is independent of \(\mathbf{w}_n\) with \(E(u_i)=0\), \(E(u_i^2)<\infty \). Then, conditional on the given value of the \(\mathbf{u}_n\), we have \(\frac{1}{n}\sum _{i=1}^{n}u_i w_{i:n} \overset{p^*}{\rightarrow }0\), as \(n\rightarrow \infty \).

Proof of Lemma 6

We first note that

$$\begin{aligned} E^*(\frac{1}{n}\sum _{i=1}^{n}(w_{i:n}-1))^2= & E^*(\frac{\tau _n}{n}\sum _{i=1}^{n}W_i)^2\\= & \frac{\tau _n^2}{n^2}\sum _{i=1}^{n}E^*(W_i^2)+\frac{\tau _n^2}{n^2}\underset{i_1\ne i_2}{\sum }E^*(W_{i_1}W_{i_2})\\= & \frac{\tau _n^2}{n}+\frac{\tau _n^2}{n^2}n(n-1)O(\frac{1}{n})\rightarrow 0, \ \ \ \text {as} \ \ n\rightarrow \infty . \end{aligned}$$

To conclude that, \(\frac{1}{n}\sum _{i=1}^{n}w_i-1\overset{p^*}{\rightarrow }0\), as \(n\rightarrow \infty \). As for the second assertion, we note that since

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}u_iw_{i:n}=\frac{\tau _n}{n}\sum _{i=1}^{n}u_iW_i+\frac{1}{n}\sum _{i=1}^{n}u_i, \end{aligned}$$

and since \(\sum _{i=1}^{n}u_i/n\rightarrow 0\), as \(n\rightarrow \infty \), we may only consider the first term. To that end, we note that

$$\begin{aligned} E^*(\frac{\tau _n}{n}\sum _{i=1}^{n}u_iW_i)^2= & \frac{\tau _n^2}{n^2}\sum _{i=1}^{n}E^*(u_i^2W_i^2)+\frac{\tau _n^2}{n^2}\underset{i_1\ne i_2}{\sum }E^*(W_{i_1}W_{i_2}u_{i_1}u_{i_2})\\\le & \left[ 1+(n-1)O(\frac{1}{n})\right] \frac{\tau _n^2}{n^2}\sum _{i=1}^{n}u_i^2 \rightarrow 0, \end{aligned}$$

as \(n\rightarrow \infty \). We therefore conclude that \(\frac{1}{n}\sum _{i=1}^{n}u_iw_{i:n}\overset{p^*}{\rightarrow }0, \) as required. \(\square \)

Lemma 7

Under the conditions of Assumptions Aand B, we have that \(a_{n_i}^{-2}\sum _{j=1}^{n_i}\phi ^2_{ij}({{\hat{\theta }}_{ni}})\overset{p}{\rightarrow } 1, \) for all \(i=1,2,\dots ,N\).

Proof of Lemma 7: Since \({{\hat{\theta }}_{ni}}\overset{p}{\rightarrow }\theta _0\), we have

$$\begin{aligned} a_{n_i}^{-2}\sum _{j=1}^{n_i}\phi ^2_{ij}({{\hat{\theta }}_{ni}})= & a_{n_i}^{-2}\sum _{j=1}^{n_i}(y_{ij}-f_{ij}({{\hat{\theta }}_{ni}}))^2f^{'2}_{ij}({{\hat{\theta }}_{ni}})\\= & a_{n_i}^{-2}\sum _{j=1}^{n_i}\epsilon _{ij}^2f_{ij}^{'2}({{\hat{\theta }}_{ni}})+a_{n_i}^{-2}\sum _{j=1}^{n_i}(f_{ij}(\theta _0+b_i)-f_{ij}({{\hat{\theta }}_{ni}}))^2f^{'2}_{ij}({{\hat{\theta }}_{ni}})\\+ & 2a_{n_i}^{-2}\sum _{j=1}^{n_i}\epsilon _{ij}(f_{ij}(\theta _0+b_i)-f_{ij}({{\hat{\theta }}_{ni}}))f^{'2}_{ij}({{\hat{\theta }}_{ni}})\\\equiv & B_1 +B_2 +B_3. \end{aligned}$$

Write,

$$\begin{aligned} B_1=a_{n_i}^{-2}\sum _{j=1}^{n_i}(\epsilon _{ij}^2-\sigma ^2)f^{'2}_{ij}({{\hat{\theta }}_{ni}})+a_{n_i}^{-2}\sigma ^2\sum _{j=1}^{n_i}f^{'2}_{ij}({{\hat{\theta }}_{ni}}). \end{aligned}$$

The first term in \(B_1\) converges to 0 by Assumption A (3), and Corollary A of Wu (1981) while the second term in \(B_1\) converges to 1 by Assumption A(3). Hence \(B_1\overset{p}{\rightarrow } 1\). As for the second and third terms, \(B_2\) and \(B_3\), it follows by a direct application of the Cauchy-Schwarz inequality ogether with Assumption B (1), that \(B_2\overset{p}{\rightarrow } 0\) and \(B_3\overset{p}{\rightarrow } 0\). Accordingly, it follows that \( a_{n_i}^{-2}\sum _{j=1}^{n_i}\phi ^2_{ij}({{\hat{\theta }}_{ni}})\overset{p}{\rightarrow } 1, \) as required. \(\square \)

Lemma 8

Under the conditions of Assumptions A and B, for all i,

$$\begin{aligned} E^*\big [\tau _{n_i}a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}W_{ij} \phi _{1ij}(b^*_{i1})\big ]^2\rightarrow 0 \end{aligned}$$

where \(b^*_{i1}={{\hat{\theta }}_{ni}}+ca_{n_i}^{-1}t\) for some \(0<c<1\), as \(n_i\rightarrow \infty \).

Proof of Lemma 8

We first note that since by Theorem 1, we have \({{\hat{\theta }}_{ni}}-b_i-\theta _0\overset{p}{\rightarrow }0\), and since

$$\begin{aligned} |b^*_{i1}-b_i-\theta _0|= & |{{\hat{\theta }}_{ni}}-b_i-\theta _0+ca_{n_i}^{-1}t|\\\le & |{{\hat{\theta }}_{ni}}-b_i-\theta _0|+\frac{c\tau _{n_i}}{\sqrt{n_i}}\frac{\sqrt{n_i}}{a_{n_i}}\frac{|t|}{\tau _{n_i}}, \end{aligned}$$

it follows under Assumption B (3) that with \(|t|\le K\tau _{n_i}\), we have \( b^*_{i1}-b_i-\theta _0\overset{p}{\rightarrow }0. \) Thus,

$$\begin{aligned}&E^*[\tau _{n_i}a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup } \sum _{j=1}^{n_i}W_{ij} \phi _{1ij}(b^*_{i1})]^2\\\le & \tau _{n_i}^2a_{n_i}^{-4}\underset{|t|\le K\tau _{n_i}}{\sup }[\sum _{j=1}^{n_i}\phi ^2_{1ij}(b^*_{i1})+O(\frac{1}{n_i})\sum _{j_1\ne j_2}\phi _{1ij_1}(b^*_{i1})\phi _{1ij_2}(b^*_{i1})]\\\le & \tau _{n_i}^2a_{n_i}^{-4}\underset{|t|\le K\tau _{n_i}}{\sup }[\sum _{j=1}^{n_i}\phi ^2_{1ij}(b^*_{i1})+O(\frac{1}{n_i})(n_i-1)\sum _{j=1}^{n_i}\phi ^2_{1ij}(b^*_{i1})]\\= & \tau _{n_i}^2a_{n_i}^{-4}[O(\frac{1}{n_i})(n_i-1)+1]\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}\phi ^2_{1ij}(b^*_{i1}). \end{aligned}$$

In light of Assumption B (2–3) , and that \(\tau _{n_i}^2/n_i\rightarrow 0\), we only need to show, in order to complete the proof of Lemma 8, that

$$\begin{aligned} \underset{n_i\rightarrow \infty }{\lim } \ \ a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}\phi ^2_{1ij}(b^*_{i1})<\infty . \end{aligned}$$

Toward that end, we note that,

$$\begin{aligned}&a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}\phi ^2_{1ij}(b^*_{i1})\\= & a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}(f^{'2}_{ij}(b^*_{i1})-(y_{ij}-f_{ij}(b^*_{i1}))f^{''}_{ij}(b^*_{i1}))^2\\\le & a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}f^{'4}_{ij}(b^*_{i1})+a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}(y_{ij}-f_{ij}(b^*_{i1}))^2f^{''2}_{ij}(b^*_{i1})\\+ & 2a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\left| \sum _{j=1}^{n_i}f^{'2}_{ij}(b^*_{i1})(y_{ij}-f_{ij}(b^*_{i1}))f^{''}_{ij}(b^*_{i1})\right| \\\equiv & I_{1} +I_2 +I_3. \end{aligned}$$

It is straight forward to see that by Assumption B (1), \(\underset{n_i\rightarrow \infty }{\lim }I_1<\infty \), and that by Cauchy-Schwarz inequality \(\underset{n_i\rightarrow \infty }{\lim }I_3<\infty \). Finally we write

$$\begin{aligned} I_2= & a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}(\epsilon _{ij}^2-\sigma ^2)f^{''2}_{ij}(b^*_{i1})+a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}\sigma ^2f^{''2}_{ij}(b^*_{i1})\\+ & a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}(f_{ij}(\theta _0+b_i)-f_{ij}(b^*_{i1}))^2f^{''2}_{ij}(b^*_{i1})\\+ & 2a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\left| \sum _{j=1}^{n_i}\epsilon _{ij}(f_{ij}(\theta _0+b_i)-f_{ij}(b^*_{i1}))f^{''2}_{ij}(b^*_{i1})\right| . \end{aligned}$$

The first term converges to 0 in probability by Assumption B (2) and Corollary A of Wu (1981). Then, according to Assumption A (2),

$$\begin{aligned} \underset{n_i\rightarrow \infty }{\lim } a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}\sigma ^2f^{''2}_{ij}(b^*_{i1}) <\infty . \end{aligned}$$

The third term in \(I_2\) converges to 0 in probability by an application of the Cauchy-Schwarz inequality combined with Assumption B (1) and (2). Finally, the fourth term in \(I_2\), converges to 0 in probability again, by an application of the Cauchy-Schwarz inequality. Thus we have \(\underset{n_i\rightarrow \infty }{\lim }I_2<\infty \). Accordingly, we have established that as \(n_i\rightarrow \infty \),

$$\begin{aligned} E^*\left[ \tau _{n_i}a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}W_{ij} \phi _{1ij}(b^*_{i1})\right] ^2\rightarrow 0. \end{aligned}$$

\(\square \)

Lemma 9

Under the conditions of Assumptions A and B, there exists a \(K>0\) such that for any \(\epsilon >0\),

$$\begin{aligned} P^*\left[ \left| a_{n_i}^{-1}\sum _{j=1}^{n_i}W_{ij}\phi _{ij}({{\hat{\theta }}_{ni}})\right| >K\right] <\frac{\epsilon }{2}. \end{aligned}$$

Proof of Lemma 9

By Lemma 7,

$$\begin{aligned}&V^*(a_{ni}^{-1}\sum _{j=1}^{n_i}W_{ij}\phi _{ij}({{\hat{\theta }}_{ni}}))\\= & a_{ni}^{-2}\sum _{j=1}^{n_i}\phi ^2_{ij}({{\hat{\theta }}_{ni}})+a_{ni}^{-2}O(\frac{1}{n_i})\underset{j_1\ne j_2}{\sum } \phi _{ij_1}({{\hat{\theta }}_{ni}})\phi _{ij_2}({{\hat{\theta }}_{ni}})\\= & a_{ni}^{-2}\sum _{j=1}^{n_i}\phi ^2_{ij}({{\hat{\theta }}_{ni}})+a_{ni}^{-2}O(\frac{1}{n_i})(\sum _{j=1}^{n_i}\phi _{ij}({{\hat{\theta }}_{ni}}))^2 -a_{ni}^{-2}O(\frac{1}{n_i})\sum _{j=1}^{n_i}\phi ^2_{ij}({{\hat{\theta }}_{ni}})\\\le & a_{ni}^{-2}(1-O(\frac{1}{n_i}))\sum _{j=1}^{n_i}\phi ^2_{ij}({{\hat{\theta }}_{ni}})\overset{p}{\rightarrow } 1 . \end{aligned}$$

Hence we obtain,

$$\begin{aligned} P^*(\left| a_{ni}^{-1}\sum _{j=1}^{n_i}W_{ij}\phi _{ij}({{\hat{\theta }}_{ni}})\right| >K)\le \frac{V^*(a_{ni}^{-1}\sum _{j=1}^{n_i}W_{ij}\phi _{ij}({{\hat{\theta }}_{ni}}))}{K^2}\overset{p}{\rightarrow }\frac{1}{K^2}. \end{aligned}$$

Accordingly, there exists a \(K>0\) such that for any \(\epsilon >0\),

$$\begin{aligned} P^*\left[ \left| a_{n_i}^{-1}\sum _{j=1}^{n_i}W_{ij}\phi _{ij}({{\hat{\theta }}_{ni}})\right| >K\right] <\frac{\epsilon }{2}. \end{aligned}$$

\(\square \)

Proof of Theorem 3

Let

$$\begin{aligned} S^*_{n_i}(t):= a_{n_i}^{-1}\sum _{j=1}^{n_i}w_{ij}\left[ \phi _{ij}({{\hat{\theta }}_{ni}}+a_{n_i}^{-1}t)-\phi _{ij}({{\hat{\theta }}_{ni}})\right] -\frac{t}{\sigma ^2}. \end{aligned}$$
(19)

First, we will show that for any given \(K>0\),

$$\begin{aligned} E^*\left[ \tau _{n_i}^{-1}\underset{|t|\le K\tau _{n_i}}{\sup }|S^*_{n_i}(t)|\right] ^2\overset{p^*}{\rightarrow }0. \end{aligned}$$
(20)

By a Taylor expansion we have that \( \phi _{ij}({{\hat{\theta }}_{ni}}+a_{n_i}^{-1}t)=\phi _{ij}({{\hat{\theta }}_{ni}})+\phi _{1ij}(b^*_{i1})a_{n_i}^{-1}t, \) where as before, \(b^*_{i1}={{\hat{\theta }}_{ni}}+ca_{n_i}^{-1}t\) for some \(0<c<1\). Accordingly we obtain,

$$\begin{aligned} \tau _{n_i}^{-1}\underset{|t|\le K\tau _{n_i}}{\sup }|S^*_{n_i}(t)|= & \tau _{n_i}^{-1}\underset{|t|\le K\tau _{n_i}}{\sup } \left| a_{n_i}^{-1}\sum _{j=1}^{n_i}w_{ij} \phi _{1ij}(b^*_{i1})a_{n_i}^{-1}t-\frac{t}{\sigma ^2} \right| \\= & K\left| a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}w_{ij}\phi _{1ij}(b^*_{i1})-\frac{1}{\sigma ^2}\right| \\\le & K\left| \tau _{n_i}a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}W_{ij}\phi _{1ij}(b^*_{i1})\right| + K\left| a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}\phi _{1ij}(b^*_{i1})-\frac{1}{\sigma ^2}\right| . \end{aligned}$$

Further,

$$\begin{aligned} E^*\left[ \tau _{n_i}^{-1}\underset{|t|\le K\tau _{n_i}}{\sup }|S^*_{n_i}(t)|\right] ^2\le & K^2E^*\left| \tau _{n_i}a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}W_{ij}\phi _{1ij}(b^*_{i1})\right| ^2\\+ & K^2E^*\left| a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}\phi _{1ij}(b^*_{i1})-\frac{1}{\sigma ^2}\right| ^2\\+ & K^2E^*\left| \tau _{n_i}a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}W_{ij}\phi _{1ij}(b^*_{i1})\right| \left| a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}\phi _{1ij}(b^*_{i1})-\frac{1}{\sigma ^2}\right| . \end{aligned}$$

By Lemma 8 and Lemma 1, we have

$$\begin{aligned} E^*\left| \tau _{n_i}a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}W_{ij}\phi _{1ij}(b^*_{i1})\right| ^2\rightarrow 0, \end{aligned}$$

and

$$\begin{aligned} E^*\left| a_{n_i}^{-2}\underset{|t|\le K\tau _{n_i}}{\sup }\sum _{j=1}^{n_i}\phi _{1ij}(b^*_{i1})-\frac{1}{\sigma ^2}\right| ^2\rightarrow 0. \end{aligned}$$

Thus, by an application of the Cauchy-Schwarz inequality we have proved (20). Next, in light of (19) we define

$$\begin{aligned} A^*_{n_i}(t):=a_{n_i}^{-1}t\sum _{j=1}^{n_i}w_{ij}\phi _{ij}({{\hat{\theta }}_{ni}}+a_{n_i}^{-1}t)= tS^*_{n_i}(t)+a_{n_i}^{-1}t\sum _{j=1}^{n_i}w_{ij}\phi _{ij}({{\hat{\theta }}_{ni}})+\frac{t^2}{\sigma ^2}. \end{aligned}$$

Accordingly,

$$\begin{aligned} \underset{|t|=K\tau _{n_i}}{\inf }A^*_{n_i}(t)\ge -K\tau _{n_i}\underset{|t|=K\tau _{n_i}}{\sup }|S^*_{n_i}(t)|-K\tau _{n_i}a_{n_i}^{-1}\left| \sum _{j=1}^{n_i}w_{ij} \phi _{ij}({{\hat{\theta }}_{ni}})\right| +\frac{K^2\tau _{n_i}^2}{\sigma ^2}. \end{aligned}$$

Recall that by Lemma 9, there exists a \(K>0\) such that for any \(\epsilon >0\),

$$\begin{aligned} P^*\left[ \left| a_{n_i}^{-1}\sum _{j=1}^{n_i}W_{ij}\phi _{ij}({{\hat{\theta }}_{ni}})\right| >K\right] <\frac{\epsilon }{2}. \end{aligned}$$
(21)

Accordingly, by (21) and (20) we may choose large enough K such that for sufficiently large \(n_i\),

$$\begin{aligned} P^*\left( \underset{|t|=K\tau _{n_i}}{\inf }A_{n_i}(t)\ge 0\right)\ge & P^*\left[ \underset{|t|=K\tau _{n_i}}{\sup }|S^*_{n_i}(t)|+a_{n_i}^{-1}\left| \sum _{j=1}^{n_i}w_{ij}\phi _{ij}({{\hat{\theta }}_{ni}})\right| \le \frac{K\tau _{n_i}}{\sigma ^2}\right] \\= & P^*\left[ \underset{|t|=K\tau _{n_i}}{\sup }|S^*_{n_i}(t)|+a_{n_i}^{-1}\tau _{n_i}\left| \sum _{j=1}^{n_i}W_{ij}\phi _{ij}({{\hat{\theta }}_{ni}})\right| \le \frac{K\tau _{n_i}}{\sigma ^2}\right] \\= & 1-P^*\left[ \underset{|t|=K\tau _{n_i}}{\sup }|S^*_{n_i}(t)|+a_{n_i}^{-1}\tau _{n_i}\left| \sum _{j=1}^{n_i}W_{ij}\phi _{ij}({{\hat{\theta }}_{ni}})\right|> \frac{K\tau _{n_i}}{\sigma ^2}\right] \\\ge & 1-P^*\left[ \tau _{n_i}^{-1}\underset{|t|=K\tau _{n_i}}{\sup }|S^*_{n_i}(t)|>\frac{K}{4\sigma ^2}\right] -P^*\left[ a_{n_i}^{-1}\left| \sum _{j=1}^{n_i}W_{ij}\phi _{ij}({{\hat{\theta }}_{ni}})\right| >\frac{K}{4\sigma ^2}\right] \\\ge & 1-\epsilon . \end{aligned}$$

From the continuity of \(\sum _{j=1}^{n_i}\phi _{ij}(\theta )\) in \(\theta \), we have for sufficiently large \(n_i\), that there exists a K such that the equation \( \sum _{j=1}^{n_i}w_{ij}\phi _{ij}({{\hat{\theta }}_{ni}}+a_{n_i}^{-1}t)=0, \) has a root, \(t=T^*_{ni}\) in \(|t|\le K\tau _{n_i}\), with a probability larger than \(1-\epsilon \). That is, we have \({\hat{\theta }}_{ni}^*={{\hat{\theta }}_{ni}}+a_{ni}^{-1}T^*_{ni}, \) where \(|\tau _{n_i}^{-1}T^*_{ni}|<K\) in probability. Accordingly we may rewrite \({\hat{\theta }}^*_{{RTS}}\) as,

$$\begin{aligned} {\hat{\theta }}^*_{{RTS}}= & \frac{1}{N}\sum _{i=1}^{N}u_i{{\hat{\theta }}_{ni}}+\frac{1}{N}\sum _{i=1}^{N}u_ia_{ni}^{-1}T^*_{ni}\\= & \frac{1}{N}\sum _{i=1}^{N}u_i(\theta _0+b_i+a_{ni}^{-1}T_{ni})+\frac{1}{N}\sum _{i=1}^{N}u_ia_{ni}^{-1}T^*_{ni}\\= & \frac{1}{N}\sum _{i=1}^{N}u_i\theta _0+\frac{1}{N}\sum _{i=1}^{N}u_ib_i+\frac{1}{N}\sum _{i=1}^{N}u_ia_{ni}^{-1}T_{ni}+\frac{1}{N}\sum _{i=1}^{N}u_ia_{ni}^{-1}T^*_{ni}. \end{aligned}$$

That is,

$$\begin{aligned} {\hat{\theta }}^*_{{RTS}}-\theta _0=\frac{1}{N}\sum _{i=1}^{N}(u_i-1)\theta _0+\frac{1}{N}\sum _{i=1}^{N}u_ib_i+\frac{1}{N}\sum _{i=1}^{N}u_ia_{ni}^{-1}T_{ni}+\frac{1}{N}\sum _{i=1}^{N}u_ia_{ni}^{-1}T^*_{ni}. \end{aligned}$$

Additionally, by Lemma 6, we have \(\frac{1}{N}\sum _{i=1}^{N}(u_i-1)\overset{p^*}{\rightarrow }0, \) as well as, \(\frac{1}{N}\sum _{i=1}^{N}u_ib_i\overset{p^*}{\rightarrow }0\). Further, we also have that

$$\begin{aligned} \frac{1}{N}\sum _{i=1}^{N}u_ia_{ni}^{-1}T_{ni}= \frac{1}{N}\sum _{i=1}^{N}(u_i-1)a_{ni}^{-1}T_{ni}+\frac{1}{N}\sum _{i=1}^{N}a_{ni}^{-1}T_{ni}. \end{aligned}$$

Now by Lemma 2 and the fact \(T_{ni}=O_p(1)\), we obtain, with \(U_i:=(u_i-1)/\tau _N\), that

$$\begin{aligned} E^*(\frac{1}{N}\sum _{i=1}^{N}(u_i-1)a_{ni}^{-1}T_{ni})^2= & E^*(\frac{\tau _N}{N}\sum _{i=1}^{N}U_ia_{ni}^{-1}T_{ni})^2\\\le & \frac{\tau _N^2}{N^2}\sum _{i=1}^{N}a_{ni}^{-2}T^2_{ni}+(N-1)O(\frac{1}{N})\frac{\tau _N^2}{N^2}\sum _{i=1}^{N}a_{ni}^{-2}T^2_{ni} \overset{p}{\rightarrow }0, \end{aligned}$$

as well as, \(\frac{1}{N}\sum _{i=1}^{N}a_{ni}^{-1}T_{ni}\overset{p}{\rightarrow } 0\). That is, we have established that, \(E^*(\frac{1}{N}\sum _{i=1}^{N}u_ia_{ni}^{-1}T_{ni})^2\overset{p}{\rightarrow } 0\). Accordingly we conclude, \(P^*(|\frac{1}{N}\sum _{i=1}^{N}u_ia_{ni}^{-1}T_{ni}|>\epsilon )=o_p(1)\). Similarly,

$$\begin{aligned} \frac{1}{N}\sum _{i=1}^{N}u_ia_{ni}^{-1}T^*_{ni}= \frac{1}{N}\sum _{i=1}^{N}(u_i-1)a_{ni}^{-1}T^*_{ni}+\frac{1}{N}\sum _{i=1}^{N}a_{ni}^{-1}T^*_{ni}, \end{aligned}$$

where by Lemma 2, Assumption B (3) and the fact \(\tau _{n_i}^{-1}T^{*}_{ni}=O_{p^*}(1)\), we obtain,

$$\begin{aligned} E^*(\frac{1}{N}\sum _{i=1}^{N}(u_i-1)a_{ni}^{-1}T^*_{ni})^2= & E^*(\frac{\tau _N}{N}\sum _{i=1}^{N}U_ia_{ni}^{-1}T^*_{ni})^2\\\le & \frac{\tau _N^2}{N^2}\sum _{i=1}^{N}a_{ni}^{-2}T^{*2}_{ni}+(N-1)O(\frac{1}{N})\frac{\tau _N^2}{N^2}\sum _{i=1}^{N}a_{ni}^{-2}T^{*2}_{ni}\\= & (1+(N-1)O(\frac{1}{N}))\frac{\tau _N^2}{N^2}\sum _{i=1}^{N}\frac{\tau ^2_{n_i}}{a_{ni}^{2}}\tau _{n_i}^{-2}T^{*2}_{ni}\overset{p}{\rightarrow }0. \end{aligned}$$

Finally, by Lemma 2,

$$\begin{aligned} \frac{1}{N}\sum _{i=1}^{N}a_{ni}^{-1}T^*_{ni}= & \frac{1}{N}\sum _{i=1}^{N}\frac{\tau _{n_i}}{a_{ni}}\tau _{n_i}^{-1}T^*_{ni}\rightarrow 0. \end{aligned}$$

Accordingly we also conclude that, \(P^*(|\frac{1}{N}\sum _{i=1}^{N}u_ia_{ni}^{-1}T^*_{ni}|>\epsilon )=o_p(1)\). Hence, we have proved that \(P^*(|{\hat{\theta }}^*_{{RTS}}-\theta _0|>\epsilon )=o_p(1)\). \(\square \)

For the related asymptotic normality results as stated in Theorem 4, we need the following two Lemmas.

Lemma 10

Suppose that the conditions of Assumptions A and B hold. If \(\frac{\tau _{n_i}}{\tau _N}=o(\sqrt{n_i})\) then as \(n_i\rightarrow \infty \) and \(N\rightarrow \infty \),

$$\begin{aligned} \frac{\tau _N^{-1}}{\sqrt{N}}\sum _{i=1}^{N}u_ia_{n_i}^{-2}\sum _{j=1}^{n_i}w_{ij}\phi _{ij}({{\hat{\theta }}_{ni}})\overset{p^*}{\rightarrow } 0. \end{aligned}$$

Proof of Lemma 10

Let

$$\begin{aligned} X^*_{ni}:= \tau _{n_i}^{-1}a_{n_i}^{-1}\sum _{j=1}^{n_i}w_{ij} \phi _{ij}({{\hat{\theta }}_{ni}})=a_{n_i}^{-1}\sum _{j=1}^{n_i}W_{ij} \phi _{ij}({{\hat{\theta }}_{ni}}). \end{aligned}$$

Clearly \(E^*(X^*_{ni})=0\), and \(X^*_{n_i}\) are independent for i in \(1,2,\dots , N\). Further, by Lemma 7 we have, as \(n_i\rightarrow \infty \), that

$$\begin{aligned} E^*(X^{*2}_{ni})= & E^*(a_{n_i}^{-1}\sum _{j=1}^{n_i}W_{ij} \phi _{ij}({{\hat{\theta }}_{ni}}))^2\\= & a_{n_i}^{-2}\left[ \sum _{j=1}^{n_i}\phi ^2_{ij}({{\hat{\theta }}_{ni}})+O(\frac{1}{n_i})\underset{j_1\ne j_2}{\sum }\phi _{ij_1}({{\hat{\theta }}_{ni}})\phi _{ij_2}({{\hat{\theta }}_{ni}})\right] \\= & a_{n_i}^{-2}\left[ \sum _{j=1}^{n_i}\phi ^2_{ij}({{\hat{\theta }}_{ni}})+O(\frac{1}{n_i})\left( \sum _{j=1}^{n_i}\phi _{ij}({{\hat{\theta }}_{ni}})\right) ^2-O(\frac{1}{n_i})\sum _{j=1}^{n_i}\phi ^2_{ij}({{\hat{\theta }}_{ni}})\right] \\= & (1-O(\frac{1}{n_i}))a_{n_i}^{-2}\sum _{j=1}^{n_i}\phi ^2_{ij}({{\hat{\theta }}_{ni}})\rightarrow 1. \end{aligned}$$

Thus, with \(U_i=(u_i-1)/\sqrt{\tau _N}\),

$$\begin{aligned} \frac{\tau _N^{-1}}{\sqrt{N}}\sum _{i=1}^{N}u_ia_{n_i}^{-2}\sum _{j=1}^{n_i}w_{ij}\phi _{ij}({{\hat{\theta }}_{ni}})= & \frac{\tau _N^{-1}}{\sqrt{N}}\sum _{i=1}^{N}u_ia_{n_i}^{-1}\tau _{n_i}X^*_{ni}\\= & \frac{1}{\sqrt{N}}\sum _{i=1}^{N}U_ia_{n_i}^{-1}\tau _{n_i}X^*_{ni}+\frac{\tau _N^{-1}}{\sqrt{N}}\sum _{i=1}^{N}a_{n_i}^{-1}\tau _{n_i}X^*_{ni}. \end{aligned}$$

Since \(U_i\) and \(X^*_{ni}\) are independent, we obtain,

$$\begin{aligned} E^*(\frac{1}{\sqrt{N}}\sum _{i=1}^{N}U_ia_{n_i}^{-1}\tau _{n_i}X^*_{ni})^2= & \frac{1}{N}\sum _{i=1}^{N}E^* (U_i^2a_{n_i}^{-2}\tau _{n_i}^2X^{*2}_{ni})\\+ & \underset{i_1\ne i_2}{\sum }E^*(U_{i_1}U_{i_2}a_{n_{i_1}}^{-1}a_{n_{i_2}}^{-1}\tau _{n_{i_1}}\tau _{n_{i_2}}X^{*}_{ni_1}X^{*}_{ni_2})\\= & \frac{1}{N}\sum _{i=1}^{N}a_{n_i}^{-2}\tau _{n_i}^2E^* (X^{*2}_{ni})\rightarrow 0. \end{aligned}$$

Finally, since \(\frac{\tau _{n_i}}{\tau _N}=o(\sqrt{n_i})\), we also have,

$$\begin{aligned} E^*(\frac{\tau _N^{-1}}{\sqrt{N}}\sum _{i=1}^{N}a_{n_i}^{-1}\tau _{n_i}X^*_{ni})^2= & \frac{\tau _N^{-2}}{N}\sum _{i=1}^{N}a_{n_i}^{-2}\tau _{n_i}^2E^*(X^{*2}_{ni})\\= & \frac{1}{N}\sum _{i=1}^{N}\frac{\tau _{n_i}^2}{\tau _N^{2}}a_{n_i}^{-2}E^*(X^{*2}_{ni})\rightarrow 0. \end{aligned}$$

Accordingly we obtain that,

$$\begin{aligned} \frac{\tau _N^{-1}}{\sqrt{N}}\sum _{i=1}^{N}u_ia_{n_i}^{-2}\sum _{j=1}^{n_i}w_{ij}\phi _{ij}({{\hat{\theta }}_{ni}})\overset{p^*}{\rightarrow } 0. \end{aligned}$$

\(\square \)

Lemma 11

Suppose that the conditions of Assumptions A and B hold. If \(\frac{\tau _{n_i}}{\tau _N}=o(\sqrt{n_i})\) then as \(n_i\rightarrow \infty \) and \(N\rightarrow \infty \),

$$\begin{aligned} \frac{\lambda ^{-1}\tau _N^{-1}\sigma ^2}{\sqrt{N}}\sum _{i=1}^{N}u_ia_{n_i}^{-1}S_{n_i}(T^*_{ni}) \overset{p^*}{\rightarrow } 0. \end{aligned}$$

Proof of Lemma 11

We first write

$$\begin{aligned} \frac{\lambda ^{-1}\tau _N^{-1}\sigma ^2}{\sqrt{N}}\sum _{i=1}^{N}u_ia_{n_i}^{-1}S_{n_i}(T^*_{ni})=\frac{\lambda ^{-1}\sigma ^2}{\sqrt{N}}\sum _{i=1}^{N}U_ia_{n_i}^{-1}S_{n_i}(T^*_{ni})+\frac{\lambda ^{-1}\tau _N^{-1}\sigma ^2}{\sqrt{N}}\sum _{i=1}^{N}a_{n_i}^{-1}S_{n_i}(T^*_{ni}). \end{aligned}$$

By Lemma 2, Assumption B (3) and the fact \(\tau _N^{-1}S_{n_i}(T^*_{ni})\overset{p^*}{\rightarrow } 0\),

$$\begin{aligned} \frac{\lambda ^{-1}\tau _N^{-1}\sigma ^2}{\sqrt{N}}\sum _{i=1}^{N}a_{n_i}^{-1}S_{n_i}(T^*_{ni})\overset{p^*}{\rightarrow } 0. \end{aligned}$$

Further, it can be seen that,

$$\begin{aligned} E^*(\frac{1}{\sqrt{N}}\sum _{i=1}^{N}U_ia_{ni}^{-1}S_{n_i}(T^*_{ni}))^2\le & \frac{1}{N}\left[ 1+(N-1)O(\frac{1}{N})\right] \sum _{i=1}^{N}a_{ni}^{-2}E^*(S^2_{n_i}(T^*_{ni}))\rightarrow 0. \end{aligned}$$

Thus we have,

$$\begin{aligned} \frac{\lambda ^{-1}\tau _N^{-1}\sigma ^2}{\sqrt{N}}\sum _{i=1}^{N}u_ia_{n_i}^{-1}S_{n_i}(T^*_{ni}) \overset{p^*}{\rightarrow } 0. \end{aligned}$$

\(\square \)

We conclude the "Appendix" with a proof of Theorem 4.

Proof of Theorem 4

By Theorem 3 and (19) we express,

$$\begin{aligned} {\hat{\theta }}_{ni}^*-{{\hat{\theta }}_{ni}}=-a_{ni}^{-2}\sigma ^2\sum _{j=1}^{n_i}w_{ij}\phi _{ij}({{\hat{\theta }}_{ni}})- a_{n_i}^{-1}\sigma ^2S_{n_i}(T^*_{ni}). \end{aligned}$$

Accordingly we have,

$$\begin{aligned} {\hat{\theta }}^*_{{SRS}}-{\hat{\theta }}_{{STS}}= \frac{1}{N}\sum _{i=1}^{N}(u_i-1){{\hat{\theta }}_{ni}}-\frac{\sigma ^2}{N}\sum _{i=1}^{N}u_ia_{n_i}^{-2}\sum _{j=1}^{n_i}w_{ij}\phi _{ij}({{\hat{\theta }}_{ni}})-\frac{\sigma ^2}{N}\sum _{i=1}^{N}u_ia_{n_i}^{-1}S_{n_i}(T^*_{ni}), \end{aligned}$$

where \(|T^*_{ni}|<K\tau _{n_i}\) in probability. Further,

$$\begin{aligned} \lambda ^{-1}\tau _N^{-1}\sqrt{N}({\hat{\theta }}^*_{{RTS}}-{\hat{\theta }}_{{STS}})= & \frac{\lambda ^{-1}\tau _N^{-1}}{\sqrt{N}}\sum _{i=1}^{N}(u_i-1){{\hat{\theta }}_{ni}}\\- & \frac{\lambda ^{-1}\tau _N^{-1}\sigma ^2}{\sqrt{N}}\sum _{i=1}^{N}u_ia_{n_i}^{-2}\sum _{j=1}^{n_i}w_{ij}\phi _{ij}({{\hat{\theta }}_{ni}})\\- & \frac{\lambda ^{-1}\tau _N^{-1}\sigma ^2}{\sqrt{N}}\sum _{i=1}^{N}u_ia_{n_i}^{-1}S_{n_i}(T^*_{ni})\\\equiv & I_1+I_2+I_3 . \end{aligned}$$

By Lemma 10, \(I_2\overset{p^*}{\rightarrow } 0\), and by Lemma 11, \(I_3\overset{p^*}{\rightarrow } 0\), and therefore it remains only to consider \(I_1\). Now, observe that,

$$\begin{aligned} I_1:= \frac{\lambda ^{-1}\tau _N^{-1}}{\sqrt{N}}\sum _{i=1}^{N}(u_i-1){{\hat{\theta }}_{ni}}=\frac{\lambda ^{-1}}{\sqrt{N}}\sum _{i=1}^{N}U_i(b_i+\theta _0)+\frac{\lambda ^{-1}}{\sqrt{N}}\sum _{i=1}^{N}U_ia_{n_i}^{-1}T_{ni}. \end{aligned}$$

By Lemma 2,

$$\begin{aligned} E^*(\frac{1}{\sqrt{N}}\sum _{i=1}^{N}U_ia_{ni}^{-1}T_{ni})^2\le & \frac{1}{N}\sum _{i=1}^{N}a_{ni}^{-2}T^2_{ni}+(N-1)O(\frac{1}{N})\frac{1}{N}\sum _{i=1}^{N}a_{ni}^{-2}T^2_{ni} \overset{p}{\rightarrow }0. \end{aligned}$$

Further by Lemma 5,

$$\begin{aligned} \bar{U}_N:=\frac{1}{N}\sum _{i=1}^{N}U_i\equiv \frac{1}{N} \sum _{i=1}^{N}\frac{u_i-1}{\tau _N}\overset{p^*}{\rightarrow } 0, \end{aligned}$$

and clearly, \(\sqrt{N}(\bar{b}+\theta _0)\Rightarrow \mathcal{{N}}(\theta _0,\lambda ^2)\). Accordingly we have, \(\frac{\lambda ^{-1}}{N}\sum _{i=1}^{N}(b_i-\bar{b})^2\rightarrow 1 \ \ a.s.\) as well as \(\sqrt{N} \bar{U}(\bar{b}+\theta _0)\overset{p^*}{\rightarrow } 0\). Further, by Lemma 4.6 of Praestgaard and Wellner (1993), we have that

$$\begin{aligned} \frac{\lambda ^{-1}}{\sqrt{N}}\sum _{i=1}^{N}U_i(b_i+\theta _0)\Rightarrow {{\mathcal {N}}}(0,1). \end{aligned}$$

Thus we have

$$\begin{aligned} \frac{\lambda ^{-1}\tau _N^{-1}}{\sqrt{N}}\sum _{i=1}^{N}(u_i-1){{\hat{\theta }}_{ni}}\Rightarrow \mathcal{{N}}(0,1). \end{aligned}$$

Finally we conclude that as \(n_i\rightarrow \infty \) and \(N\rightarrow \infty \),

$$\begin{aligned} \lambda ^{-1}\tau _N^{-1}\sqrt{N}({\hat{\theta }}^*_{{RTS}}-{\hat{\theta }}_{{STS}})\Rightarrow \mathcal{{N}}(0,1). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Boukai, B. Recycled two-stage estimation in nonlinear mixed effects regression models. Stat Methods Appl 31, 551–585 (2022). https://doi.org/10.1007/s10260-021-00581-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-021-00581-7

Keywords

Mathematics Subject Classification

Navigation