Skip to main content

Advertisement

Log in

Consumption of red meat and processed meat and cancer incidence: a systematic review and meta-analysis of prospective studies

  • META-ANALYSIS
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Red meat and processed meat consumption has been hypothesized to increase risk of cancer, but the evidence is inconsistent. We performed a systematic review and meta-analysis of prospective studies to summarize the evidence of associations between consumption of red meat (unprocessed), processed meat, and total red and processed meat with the incidence of various cancer types. We searched in MEDLINE and EMBASE databases through December 2020. Using a random-effect meta-analysis, we calculated the pooled relative risk (RR) and 95% confidence intervals (CI) of the highest versus the lowest category of red meat, processed meat, and total red and processed meat consumption in relation to incidence of various cancers. We identified 148 published articles. Red meat consumption was significantly associated with greater risk of breast cancer (RR = 1.09; 95% CI = 1.03–1.15), endometrial cancer (RR = 1.25; 95% CI = 1.01-1.56), colorectal cancer (RR = 1.10; 95% CI = 1.03–1.17), colon cancer (RR = 1.17; 95% CI = 1.09-1.25), rectal cancer (RR = 1.22; 95% CI = 1.01-1.46), lung cancer (RR = 1.26; 95% CI = 1.09–1.44), and hepatocellular carcinoma (RR = 1.22; 95% CI = 1.01-1.46). Processed meat consumption was significantly associated with a 6% greater breast cancer risk, an 18% greater colorectal cancer risk, a 21% greater colon cancer risk, a 22% greater rectal cancer risk, and a 12% greater lung cancer risk. Total red and processed meat consumption was significantly associated with greater risk of colorectal cancer (RR = 1.17; 95% CI = 1.08–1.26), colon cancer (RR = 1.21; 95% CI = 1.09–1.34), rectal cancer (RR = 1.26; 95% CI = 1.09–1.45), lung cancer (RR = 1.20; 95% CI = 1.09-1.33), and renal cell cancer (RR = 1.19; 95% CI = 1.04–1.37). This comprehensive systematic review and meta-analysis study showed that high red meat intake was positively associated with risk of breast cancer, endometrial cancer, colorectal cancer, colon cancer, rectal cancer, lung cancer, and hepatocellular carcinoma, and high processed meat intake was positively associated with risk of breast, colorectal, colon, rectal, and lung cancers. Higher risk of colorectal, colon, rectal, lung, and renal cell cancers were also observed with high total red and processed meat consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Red meat and processed meat. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 114. Lyon (FR): International Agency for Research on Cancer; 2018.

  2. Wu K, Spiegelman D, Hou T, Albanes D, Allen NE, Berndt SI, et al. Associations between unprocessed red and processed meat, poultry, seafood and egg intake and the risk of prostate cancer: a pooled analysis of 15 prospective cohort studies. Int J Cancer. 2016;138(10):2368–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee JE, Spiegelman D, Hunter DJ, Albanes D, Bernstein L, van den Brandt PA, et al. Fat, protein, and meat consumption and renal cell cancer risk: a pooled analysis of 13 prospective studies. J Natl Cancer Inst. 2008;100(23):1695–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Missmer SA, Smith-Warner SA, Spiegelman D, Yaun SS, Adami HO, Beeson WL, et al. Meat and dairy food consumption and breast cancer: a pooled analysis of cohort studies. Int J Epidemiol. 2002;31(1):78–85.

    Article  PubMed  Google Scholar 

  5. Farvid MS, Stern MC, Norat T, Sasazuki S, Vineis P, Weijenberg MP, et al. Consumption of red and processed meat and breast cancer incidence: a systematic review and meta-analysis of prospective studies. Int J Cancer. 2018;143(11):2787–99.

  6. Zhao Z, Feng Q, Yin Z, Shuang J, Bai B, Yu P, et al. Red and processed meat consumption and colorectal cancer risk: a systematic review and meta-analysis. Oncotarget. 2017;8(47):83306–14.

  7. Zhao Z, Yin Z, Pu Z, Zhao Q. Association between consumption of red and processed meat and pancreatic cancer risk: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2017;15(4):486–93.

  8. Bylsma LC, Alexander D. A review and meta-analysis of prospective studies of red and processed meat, meat cooking methods, heme iron, heterocyclic amines and prostate cancer. Nutr J. 2015;14:125.

  9. Kim SR, Kim K, Lee SA, Kwon SO, Lee JK, Keum N, Park SM. Effect of red, processed, and white meat consumption on the risk of gastric cancer: an overall and dose-response meta-analysis. Nutrients. 2019;11(4):826.

  10. Xue XJ, Gao Q, Qiao JH, Zhang J, Xu CP, Liu J. Red and processed meat consumption and the risk of lung cancer: a dose-response meta-analysis of 33 published studies. Int J Clin Exp Med. 2014;7(6):1542–53.

  11. Luo J, Yang Y, Liu J, Lu K, Tang Z, Liu P, Liu L, Zhu Y. Systematic review with meta-analysis: meat consumption and the risk of hepatocellular carcinoma. Aliment Pharmacol Ther. 2014;39(9):913–22.

  12. Zhang SJ, Wang QW, He JJ. Intake of red and processed meat and risk of renal cell carcinoma: a meta-analysis of observational studies. Oncotarget. 2017;8(44):77942–56.

  13. Khodavandi A, Alizadeh F, Razis AFA. Association between dietary intake and risk of ovarian cancer: a systematic review and meta-analysis. Eur J Nutr. 2021;60(4):1707-36.

  14. Ju W, Keum N, Lee DH, Kim YH, Kim SC, Ding EL, et al. Red meat intake and the risk of endometrial cancer: meta-analysis of observational studies. World J Meta-Anal. 2015;3(2):125–32.

    Article  Google Scholar 

  15. Zhao Z, Wang F, Chen D, Zhang C. Red and processed meat consumption and esophageal cancer risk: a systematic review and meta-analysis. Clin Transl Oncol. 2020;22(4):532–45.

  16. Crippa A, Larsson SC, Discacciati A, Wolk A, Orsini N. Red and processed meat consumption and risk of bladder cancer: a dose-response meta-analysis of epidemiological studies. Eur J Nutr. 2018;57(2):689–701.

  17. Sergentanis TN, Ntanasis-Stathopoulos I, Tzanninis IG, Gavriatopoulou M, Sergentanis IN, Dimopoulos MA, Psaltopoulou T. Meat, fish, dairy products and risk of hematological malignancies in adults - a systematic review and meta-analysis of prospective studies. Leuk Lymphoma. 2019;60(8):1978–90.

  18. Wei Y, Zou D, Cao D, Xie P. Association between processed meat and red meat consumption and risk for glioma: a meta-analysis from 14 articles. Nutrition. 2015;31(1):45–50.

    Article  PubMed  Google Scholar 

  19. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.

  20. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  PubMed  Google Scholar 

  21. Nguyen S, Li H, Yu D, Gao J, Gao Y, Tran H, et al. Adherence to dietary recommendations and colorectal cancer risk: results from two prospective cohort studies. Int J Epidemiol. 2020;49(1):270–80.

    Article  PubMed  Google Scholar 

  22. Dunneram Y, Greenwood DC, Cade JE. Diet and risk of breast, endometrial and ovarian cancer: UK Women’s Cohort Study. Br J Nutr. 2019;122(5):564–74.

    Article  CAS  PubMed  Google Scholar 

  23. Rice MS, Poole EM, Willett WC, Tworoger SS. Adult dietary fat intake and ovarian cancer risk. Int J Cancer. 2020;146(10):2756–72.

    Article  CAS  PubMed  Google Scholar 

  24. Farvid MS, Cho E, Chen WY, Eliassen AH, Willett WC. Dietary protein sources in early adulthood and breast cancer incidence: prospective cohort study. BMJ. 2014;348:g3437.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Luu HN, Neelakantan N, Geng TT, Wang R, Goh GB, Clemente JC, et al. Quality diet indexes and risk of hepatocellular carcinoma: Findings from the Singapore Chinese Health Study. Int J Cancer. 2021;148(9):2102–14.

  26. Bravi F, Decarli A, Russo AG. Risk factors for breast cancer in a cohort of mammographic screening program: a nested case–control study within the FRiCaM study. Cancer Med. 2018;7(5):2145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wright ME, Bowen P, Virtamo J, Albanes D, Gann PH. Estimated phytanic acid intake and prostate cancer risk: a prospective cohort study. Int J Cancer. 2012;131(6):1396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Layne TM, Graubard BI, Ma X, Mayne ST, Albanes D. Prostate cancer risk factors in black and white men in the NIH-AARP Diet and Health Study. Prostate Cancer Prostatic Dis. 2019;22(1):91–100.

    Article  PubMed  Google Scholar 

  29. Jones P, Cade JE, Evans CEL, Hancock N, Greenwood DC. The Mediterranean diet and risk of colorectal cancer in the UK Women's Cohort Study. Int J Epidemiol. 2017;46(6):1786–96.

  30. Taunk P, Hecht E, Stolzenberg-Solomon R. Are meat and heme iron intake associated with pancreatic cancer? Results from the NIH-AARP diet and health cohort. Int J Cancer. 2016;138(9):2172–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pang Y, Holmes MV, Guo Y, Yang L, Bian Z, Chen Y, et al. Smoking, alcohol, and diet in relation to risk of pancreatic cancer in China: a prospective study of 0.5 million people. Cancer Med. 2018;7(1):229–39.

  32. Quist AJL, Inoue-Choi M, Weyer PJ, Anderson KE, Cantor KP, Krasner S, et al. Ingested nitrate and nitrite, disinfection by-products, and pancreatic cancer risk in postmenopausal women. Int J Cancer. 2018;142(2):251–61.

    Article  CAS  PubMed  Google Scholar 

  33. Pirie K, Peto R, Green J, Reeves GK, Beral V, Million Women Study C. Lung cancer in never smokers in the UK Million Women Study. Int J Cancer. 2016;139(2):347–54.

  34. Xu X. Processed meat intake and bladder cancer risk in the prostate, lung, colorectal and ovarian (PLCO) cohort. Cancer Epidemiol Biomarkers Prev. 2019;28(12):1993–1997.

  35. Luo X, Sui J, Yang W, Sun Q, Ma Y, Simon TG, et al. Type 2 Diabetes Prevention Diet and Hepatocellular Carcinoma Risk in US Men and Women. Am J Gastroenterol. 2019;114(12):1870–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma Y, Yang W, Li T, Liu Y, Simon TG, Sui J, et al. Meat intake and risk of hepatocellular carcinoma in two large US prospective cohorts of women and men. Int J Epidemiol. 2019;48(6):1863–71.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yen H, Li WQ, Dhana A, Li T, Qureshi A, Cho E. Red meat and processed meat intake and risk for cutaneous melanoma in white women and men: Two prospective cohort studies. J Am Acad Dermatol. 2018;79(2):252–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kuan AS, Green J, Kitahara CM, De Gonzalez AB, Key T, G KR, et al. Diet and risk of glioma: combined analysis of 3 large prospective studies in the UK and USA. Neuro Oncol. 2019;21(7):944–52.

  39. Han MA, Zeraatkar D, Guyatt GH, Vernooij RWM, El Dib R, Zhang Y, et al. Reduction of red and processed meat intake and cancer mortality and incidence: A systematic review and meta-analysis of cohort studies. Ann Intern Med. 2019;171(10):711–20.

  40. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol. 2001;54(10):1046–55.

    Article  CAS  PubMed  Google Scholar 

  41. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.

    Article  CAS  PubMed  Google Scholar 

  42. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mills PK, Beeson WL, Phillips RL, Fraser GE. Dietary habits and breast cancer incidence among Seventh-day Adventists. Cancer. 1989;64(3):582–90.

    Article  CAS  PubMed  Google Scholar 

  44. Toniolo P, Riboli E, Shore RE, Pasternack BS. Consumption of meat, animal products, protein, and fat and risk of breast cancer: a prospective cohort study in New York. Epidemiology. 1994;5(4):391–7.

    Article  CAS  PubMed  Google Scholar 

  45. Key TJ, Sharp GB, Appleby PN, Beral V, Goodman MT, Soda M, Mabuchi K. Soya foods and breast cancer risk: a prospective study in Hiroshima and Nagasaki, Japan. Br J Cancer. 1999;81(7):1248–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gilsing AM, Weijenberg MP, Goldbohm RA, Dagnelie PC, van den Brandt PA, Schouten LJ. Vegetarianism, low meat consumption and the risk of lung, postmenopausal breast and prostate cancer in a population-based cohort study. Eur J Clin Nutr. 2016;70(6):723–9.

  47. Holmes MD, Colditz GA, Hunter DJ, Hankinson SE, Rosner B, Speizer FE, et al. Meat, fish and egg intake and risk of breast cancer. Int J Cancer. 2003;104(2):221–7.

    Article  CAS  PubMed  Google Scholar 

  48. van der Hel OL, Peeters PHM, Hein DW, Doll MA, Grobbee DE, Ocke M, et al. GSTM1 null genotype, red meat consumption and breast cancer risk (The Netherlands). Cancer Causes Control. 2004;15(3):295–303.

    Article  PubMed  Google Scholar 

  49. Kabat GC, Miller AB, Jain M, Rohan TE. Dietary iron and heme iron intake and risk of breast cancer: a prospective cohort study. Cancer Epidemiol Biomarkers Prev. 2007;16(6):1306–8.

  50. Ferrucci LM, Cross AJ, Graubard BI, Brinton LA, McCarty CA, Ziegler RG, et al. Intake of meat, meat mutagens, and iron and the risk of breast cancer in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Br J Cancer. 2009;101(1):178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Larsson SC, Bergkvist L, Wolk A. Long-term meat intake and risk of breast cancer by oestrogen and progesterone receptor status in a cohort of Swedish women. Eur J Cancer. 2009;45(17):3042–6.

    Article  CAS  PubMed  Google Scholar 

  52. Pala V, Krogh V, Berrino F, Sieri S, Grioni S, Tjonneland A, et al. Meat, eggs, dairy products, and risk of breast cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Am J Clin Nutr. 2009;90(3):602–12.

    Article  CAS  PubMed  Google Scholar 

  53. Genkinger JM, Makambi KH, Palmer JR, Rosenberg L, Adams-Campbell LL. Consumption of dairy and meat in relation to breast cancer risk in the Black Women’s Health Study. Cancer Causes Control. 2013;24(4):675–84.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hastert TA, Beresford SA, Patterson RE, Kristal AR, White E. Adherence to WCRF/AICR cancer prevention recommendations and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev. 2013;22(9):1498–508.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pouchieu C, Deschasaux M, Hercberg S, Druesne-Pecollo N, Latino-Martel P, Touvier M. Prospective association between red and processed meat intakes and breast cancer risk: modulation by an antioxidant supplementation in the SU.VI.MAX randomized controlled trial. Int J Epidemiol. 2014;43(5):1583–92.

  56. Nomura SJ, Dash C, Rosenberg L, Yu J, Palmer JR, Adams-Campbell LL. Adherence to diet, physical activity and body weight recommendations and breast cancer incidence in the Black Women's Health Study. Int J Cancer. 2016;139(12):2738–52.

  57. Inoue-Choi M, Sinha R, Gierach GL, Ward MH. Red and processed meat, nitrite, and heme iron intakes and postmenopausal breast cancer risk in the NIH-AARP Diet and Health Study. Int J Cancer. 2016;138(7):1609–18.

    Article  CAS  PubMed  Google Scholar 

  58. van den Brandt PA, Schulpen M. Mediterranean diet adherence and risk of postmenopausal breast cancer: results of a cohort study and meta-analysis. Int J Cancer. 2017;140(10):2220–31.

    Article  PubMed  CAS  Google Scholar 

  59. Knuppel A, Papier K, Fensom GK, Appleby PN, Schmidt JA, Tong TYN, et al. Meat intake and cancer risk: Prospective analyses in UK Biobank. Int J Epidemiol. 2020;49(5):1540–52.

    Article  PubMed  Google Scholar 

  60. Diallo A, Deschasaux M, Latino-Martel P, Hercberg S, Galan P, Fassier P, et al. Red and processed meat intake and cancer risk: Results from the prospective NutriNet-Santé cohort study. Int J Cancer. 2018;142(2):230–7.

    Article  CAS  PubMed  Google Scholar 

  61. Lo JJ, Park YM, Sinha R, Sandler DP. Association between meat consumption and risk of breast cancer: Findings from the Sister Study. Int J Cancer. 2020;146(8):2156–65.

  62. Beslay M, Srour B, Deschasaux M, Fouche E, Naud N, Bacquie V, et al. Anxiety is a potential effect modifier of the association between red and processed meat consumption and cancer risk: findings from the NutriNet-Santé cohort. Eur J Nutr. 2021;60(4):1887–96.

  63. Barrios-Rodríguez R, Toledo E, Martinez-Gonzalez MA, Aguilera-Buenosvinos I, Romanos-Nanclares A, Jiménez-Moleón JJ. Adherence to the 2018 World Cancer Research Fund/American Institute for Cancer Research recommendations and breast cancer in the project. Nutrients. 2020;12(7):2076.

  64. Wie GA, Cho YA, Kang HH, Ryu KA, Yoo MK, Kim YA, et al. Red meat consumption is associated with an increased overall cancer risk: a prospective cohort study in Korea. Br J Nutr. 2014;112(2):238–47.

    Article  CAS  PubMed  Google Scholar 

  65. Kang JH, Peng C, Rhee JJ, Farvid MS, Willett WC, Hu FB, et al. Prospective study of a diabetes risk reduction diet and the risk of breast cancer. Am J Clin Nutr. 2020;112(6):1492–503.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Marcondes LH, Franco OH, Ruiter R, Ikram MA, Mulder M, Stricker BH, et al. Animal foods and postmenopausal breast cancer risk: a prospective cohort study. Br J Nutr. 2019;122(5):583–91.

    Article  CAS  PubMed  Google Scholar 

  67. Heath AK, Muller DC, van den Brandt PA, Papadimitriou N, Critselis E, Gunter M, et al. Nutrient-wide association study of 92 foods and nutrients and breast cancer risk. Breast Cancer Res. 2020;22(1):5.

  68. Larsson SC, Wolk A. No association of meat, fish, and egg consumption with ovarian cancer risk. Cancer Epidemiol Biomarkers Prev. 2005;14(4):1024–5.

    Article  CAS  PubMed  Google Scholar 

  69. Kiani F, Knutsen S, Singh P, Ursin G, Fraser G. Dietary risk factors for ovarian cancer: the Adventist Health Study (United States). Cancer Causes Control. 2006;17(2):137–46.

    Article  PubMed  Google Scholar 

  70. Cross AJ, Leitzmann MF, Gail MH, Hollenbeck AR, Schatzkin A, Sinha R. A prospective study of red and processed meat intake in relation to cancer risk. PLoS Med. 2007;4(12):e325.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Merritt MA, Tzoulaki I, van den Brandt PA, Schouten LJ, Tsilidis KK, Weiderpass E, et al. Nutrient-wide association study of 57 foods/nutrients and epithelial ovarian cancer in the European Prospective Investigation into Cancer and Nutrition study and the Netherlands Cohort Study. Am J Clin Nutr. 2016;103(1):161–7.

  72. Gilsing AM, Weijenberg MP, Goldbohm RA, van den Brandt PA, Schouten LJ. Consumption of dietary fat and meat and risk of ovarian cancer in the Netherlands Cohort Study. Am J Clin Nutr. 2011;93(1):118–26.

    Article  CAS  PubMed  Google Scholar 

  73. Kabat GC, Miller AB, Jain M, Rohan TE. Dietary iron and haem iron intake and risk of endometrial cancer: a prospective cohort study. Br J Cancer. 2008;98(1):194–8.

    Article  CAS  PubMed  Google Scholar 

  74. van Lonkhuijzen L, Kirsh VA, Kreiger N, Rohan TE. Endometrial cancer and meat consumption: a case-cohort study. Eur J Cancer Prev. 2011;20(4):334–9.

    Article  PubMed  Google Scholar 

  75. Genkinger JM, Friberg E, Goldbohm RA, Wolk A. Long-term dietary heme iron and red meat intake in relation to endometrial cancer risk. Am J Clin Nutr. 2012;96(4):848–54.

    Article  CAS  PubMed  Google Scholar 

  76. Arem H, Gunter MJ, Cross AJ, Hollenbeck AR, Sinha R. A prospective investigation of fish, meat and cooking-related carcinogens with endometrial cancer incidence. Br J Cancer. 2013;109(3):756–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Merritt MA, Tzoulaki I, Tworoger SS, De Vivo I, Hankinson SE, Fernandes J, et al. Investigation of dietary factors and endometrial cancer risk using a nutrient-wide association study approach in the EPIC and Nurses’ Health Study (NHS) and NHSII. Cancer Epidemiol Biomarkers Prev. 2015;24(2):466–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yamamoto A, Harris HR, Vitonis AF, Chavarro JE, Missmer SA. A prospective cohort study of meat and fish consumption and endometriosis risk. Am J Obstet Gynecol. 2018;219(2):178 e1–e10.

  79. Severson RK, Nomura A, Grove JS, Stemmermann GN. A prospective study of demographics, diet, and prostate cancer among men of Japanese. Cancer Res. 1989;49(7):1857–60.

  80. Mills PK, Beeson WL, Phillips RL, Fraser GE. Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer. 1989;64(3):598–604.

    Article  CAS  PubMed  Google Scholar 

  81. Le Marchand L, Kolonel LN, Wilkens LR, Myers BC, Hirohata T. Animal fat consumption and prostate cancer: a prospective study in Hawaii. Epidemiology. 1994;5(3):276–82.

    Article  PubMed  Google Scholar 

  82. Veierød MB, Laake P, Thelle DS. Dietary fat intake and risk of prostate cancer: a prospective study of 25,708 Norwegian men. Int J Cancer. 1997;73(5):634–8.

    Article  PubMed  Google Scholar 

  83. Michaud DS, Augustsson K, Rimm EB, Stampfer MJ, Willett WC, Giovannucci E. A prospective study on intake of animal products and risk of prostate cancer. Cancer Causes Control. 2001;12(6):557–67.

    Article  CAS  PubMed  Google Scholar 

  84. Cross AJ, Peters U, Kirsh VA, Andriole GL, Reding D, Hayes RB, et al. A prospective study of meat and meat mutagens and prostate cancer risk. Cancer Res. 2005;65(24):11779–84.

    Article  CAS  PubMed  Google Scholar 

  85. Rodriguez C, McCullough ML, Mondul AM, Jacobs EJ, Chao A, Patel AV, et al. Meat consumption among Black and White men and risk of prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiol Biomarkers Prev. 2006;15(2):211–6.

    Article  PubMed  Google Scholar 

  86. Neuhouser ML, Barnett MJ, Kristal AR, Ambrosone CB, King I, Thornquist M, Goodman G. (n-6) PUFA increase and dairy foods decrease prostate cancer risk in heavy smokers. J Nutr. 2007;137(7):1821–7.

    Article  CAS  PubMed  Google Scholar 

  87. Park SY, Murphy SP, Wilkens LR, Henderson BE, Kolonel LN. Fat and meat intake and prostate cancer risk: the multiethnic cohort study. Int J Cancer. 2007;121(6):1339–45.

    Article  CAS  PubMed  Google Scholar 

  88. Rohrmann S, Platz EA, Kavanaugh CJ, Thuita L, Hoffman SC, Helzlsouer KJ. Meat and dairy consumption and subsequent risk of prostate cancer in a US cohort study. Cancer Causes Control. 2007;18(1):41–50.

    Article  PubMed  Google Scholar 

  89. Allen NE, Key TJ, Appleby PN, Travis RC, Roddam AW, Tjønneland A, et al. Animal foods, protein, calcium and prostate cancer risk: the European Prospective Investigation into Cancer and Nutrition. Br J Cancer. 2008;98(9):1574–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Koutros S, Cross AJ, Sandler DP, Hoppin JA, Ma X, Zheng T, et al. Meat and meat mutagens and risk of prostate cancer in the Agricultural Health Study. Cancer Epidemiol Biomarkers Prev. 2008;17(1):80–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sinha R, Park Y, Graubard BI, Leitzmann MF, Hollenbeck A, Schatzkin A, et al. Meat and meat-related compounds and risk of prostate cancer in a large prospective cohort study in the United States. Am J Epidemiol. 2009;170(9):1165–77.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Agalliu I, Kirsh VA, Kreiger N, Soskolne CL, Rohan TE. Oxidative balance score and risk of prostate cancer: results from a case-cohort study. Cancer Epidemiol. 2011;35(4):353–61.

    Article  CAS  PubMed  Google Scholar 

  93. Bostick RM, Potter JD, Kushi LH, Sellers TA, Steinmetz KA, McKenzie DR, et al. Sugar, meat, and fat intake, and non-dietary risk factors for colon cancer incidence in Iowa women (United States). Cancer Causes Control. 1994;5(1):38–52.

    Article  CAS  PubMed  Google Scholar 

  94. Kato I, Akhmedkhanov A, Koenig K, Toniolo PG, Shore RE, Riboli E. Prospective study of diet and female colorectal cancer: the New York University Women’s Health Study. Nutr Cancer. 1997;28(3):276–81.

    Article  CAS  PubMed  Google Scholar 

  95. Singh PN, Fraser GE. Dietary risk factors for colon cancer in a low-risk population. Am J Epidemiol. 1998;148(8):761–74.

    Article  CAS  PubMed  Google Scholar 

  96. Knekt P, Jarvinen R, Dich J, Hakulinen T. Risk of colorectal and other gastro-intestinal cancers after exposure to nitrate, nitrite and N-nitroso compounds: a follow-up study. Int J Cancer. 1999;80(6):852–6.

    Article  CAS  PubMed  Google Scholar 

  97. Pietinen P, Malila N, Virtanen M, Hartman TJ, Tangrea JA, Albanes D, et al. Diet and risk of colorectal cancer in a cohort of Finnish men. Cancer Causes Control. 1999;10(5):387–96.

    Article  CAS  PubMed  Google Scholar 

  98. Järvinen R, Knekt P, Hakulinen T, Rissanen H, Heliovaara M. Dietary fat, cholesterol and colorectal cancer in a prospective study. Br J Cancer. 2001;85(3):357–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Flood A, Velie EM, Sinha R, Chaterjee N, Lacey JV Jr, Schairer C, et al. Meat, fat, and their subtypes as risk factors for colorectal cancer in a prospective cohort of women. Am J Epidemiol. 2003;158(1):59–68.

    Article  PubMed  Google Scholar 

  100. English DR, MacInnis RJ, Hodge AM, Hopper JL, Haydon AM, Giles GG. Red meat, chicken, and fish consumption and risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2004;13(9):1509–14.

    PubMed  Google Scholar 

  101. Lin J, Zhang SM, Cook NR, Lee IM, Buring JE. Dietary fat and fatty acids and risk of colorectal cancer in women. Am J Epidemiol. 2004;160(10):1011–22.

    Article  PubMed  Google Scholar 

  102. Wei EK, Giovannucci E, Wu K, Rosner B, Fuchs CS, Willett WC, et al. Comparison of risk factors for colon and rectal cancer. Int J Cancer. 2004;108(3):433–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chao A, Thun MJ, Connell CJ, McCullough ML, Jacobs EJ, Flanders WD, et al. Meat consumption and risk of colorectal cancer. JAMA. 2005;293(2):172–82.

    Article  CAS  PubMed  Google Scholar 

  104. Larsson SC, Rafter J, Holmberg L, Bergkvist L, Wolk A. Red meat consumption and risk of cancers of the proximal colon, distal colon and rectum: the Swedish Mammography Cohort. Int J Cancer. 2005;113(5):829–34.

    Article  CAS  PubMed  Google Scholar 

  105. Norat T, Bingham S, Ferrari P, Slimani N, Jenab M, Mazuir M, et al. Meat, fish, and colorectal cancer risk: the European Prospective Investigation into cancer and nutrition. J Natl Cancer Inst. 2005;97(12):906–16.

    Article  PubMed  Google Scholar 

  106. Tiemersma EW, Kampman E, Bueno de Mesquita HB, Bunschoten A, van Schothorst EM, Kok FJ, et al. Meat consumption, cigarette smoking, and genetic susceptibility in the etiology of colorectal cancer: results from a Dutch prospective study. Cancer Causes Control. 2002;13(4):383–93.

    Article  CAS  PubMed  Google Scholar 

  107. Berndt SI, Platz EA, Fallin MD, Thuita LW, Hoffman SC, Helzlsouer KJ. Genetic variation in the nucleotide excision repair pathway and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2006;15(11):2263–9.

    Article  CAS  PubMed  Google Scholar 

  108. Kabat GC, Miller AB, Jain M, Rohan TE. A cohort study of dietary iron and heme iron intake and risk of colorectal cancer in women. Br J Cancer. 2007;97(1):118–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Butler LM, Wang R, Koh WP, Yu MC. Prospective study of dietary patterns and colorectal cancer among Singapore Chinese. Br J Cancer. 2008;99(9):1511–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee SA, Shu XO, Yang G, Li H, Gao YT, Zheng W. Animal origin foods and colorectal cancer risk: a report from the Shanghai Women’s Health Study. Nutr Cancer. 2009;61(2):194–205.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Etemadi A, Abnet CC, Graubard BI, Beane-Freeman L, Freedman ND, Liao L, et al. Anatomical subsite can modify the association between meat and meat compounds and risk of colorectal adenocarcinoma: Findings from three large US cohorts. Int J Cancer. 2018;143(9):2261–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ollberding NJ, Wilkens LR, Henderson BE, Kolonel LN, Le Marchand L. Meat consumption, heterocyclic amines and colorectal cancer risk: the Multiethnic Cohort Study. Int J Cancer. 2012;131(7):E1125–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gilsing AM, Schouten LJ, Goldbohm RA, Dagnelie PC, van den Brandt PA, Weijenberg MP. Vegetarianism, low meat consumption and the risk of colorectal cancer in a population based cohort study. Sci Rep. 2015;5:13484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mehta SS, Arroyave WD, Lunn RM, Park YM, Boyd WA, Sandler DP. A prospective analysis of red and processed meat consumption and risk of colorectal cancer in women. Cancer Epidemiol Biomarkers Prev. 2020;29(1):141–150.

  115. Barrubés L, Babio N, Hernandez-Alonso P, Toledo E, Ramirez Sabio JB, Estruch R, et al. Association between the 2018 WCRF/AICR and the low-risk lifestyle scores with colorectal cancer risk in the PREDIMED study. J Clin Med. 2020;9(4):1215.

  116. O'Sullivan DE, Metcalfe A, Hillier TWR, King WD, Lee S, Pader J, et al. Combinations of modifiable lifestyle behaviours in relation to colorectal cancer risk in Alberta's Tomorrow Project. Scientific reports. 2020;10(1):20561.

  117. Mejborn H, Moller SP, Thygesen LC, Biltoft-Jensen A. Dietary intake of red meat, processed meat, and poultry and risk of colorectal cancer and all-cause mortality in the context of dietary guideline compliance. Nutrients. 2020;13(1):32.

  118. Sellers TA, Bazyk AE, Bostick RM, Kushi LH, Olson JE, Anderson KE, et al. Diet and risk of colon cancer in a large prospective study of older women: an analysis stratified on family history (Iowa, United States). Cancer Causes Control. 1998;9(4):357–67.

  119. Islam Z, Akter S, Kashino I, Mizoue T, Sawada N, Mori N, et al. Meat subtypes and colorectal cancer risk: A pooled analysis of 6 cohort studies in Japan. Cancer Sci. 2019;110(11):3603–14.

  120. Takachi R, Tsubono Y, Baba K, Inoue M, Sasazuki S, Iwasaki M, et al. Red meat intake may increase the risk of colon cancer in Japanese, a population with relatively low red meat consumption. Asia Pac J Clin Nutr. 2011;20(4):603–12

  121. Bernstein AM, Song M, Zhang X, Pan A, Wang M, Fuchs CS, et al. Processed and unprocessed red meat and risk of colorectal cancer: analysis by tumor location and modification by time. PLoS One. 2015;10(8):e0135959.

  122. Nomura SJ, Dash C, Rosenberg L, Yu J, Palmer JR, Adams-Campbell LL. Is adherence to diet, physical activity, and body weight cancer prevention recommendations associated with colorectal cancer incidence in African American women? Cancer Causes Control. 2016;27(7):869–79.

  123. Hastert TA, White E. Association between meeting the WCRF/AICR cancer prevention recommendations and colorectal cancer incidence: results from the VITAL cohort. Cancer Causes Control. 2016;27(11):1347–59.

  124. Wada K, Oba S, Tsuji M, Tamura T, Konishi K, Goto Y, et al. Meat consumption and colorectal cancer risk in Japan: The Takayama study. Cancer Sci. 2017;108(5):1065–70.

  125. Nomura A, Grove JS, Stemmermann GN, Severson RK. A prospective study of stomach cancer and its relation to diet, cigarettes, and alcohol consumption. Cancer Res. 1990;50(3):627–31.

    CAS  PubMed  Google Scholar 

  126. Galanis DJ, Kolonel LN, Lee J, Nomura A. Intakes of selected foods and beverages and the incidence of gastric cancer among the Japanese residents of Hawaii: a prospective study. Int J Epidemiol. 1998;27(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  127. Sauvaget C, Lagarde F, Nagano J, Soda M, Koyama K, Kodama K. Lifestyle factors, radiation and gastric cancer in atomic-bomb survivors (Japan). Cancer Causes Control. 2005;16(7):773–80.

    Article  PubMed  Google Scholar 

  128. Gonzalez CA, Jakszyn P, Pera G, Agudo A, Bingham S, Palli D, et al. Meat intake and risk of stomach and esophageal adenocarcinoma within the European Prospective Investigation Into Cancer and Nutrition (EPIC). J Natl Cancer Inst. 2006;98(5):345–54.

    Article  PubMed  Google Scholar 

  129. Larsson SC, Bergkvist L, Wolk A. Processed meat consumption, dietary nitrosamines and stomach cancer risk in a cohort of Swedish women. Int J Cancer. 2006;119(4):915–9.

    Article  CAS  PubMed  Google Scholar 

  130. Keszei AP, Schouten LJ, Goldbohm RA, van den Brandt PA. Red and processed meat consumption and the risk of esophageal and gastric cancer subtypes in The Netherlands Cohort Study. Ann Oncol. 2012;23(9):2319–26.

    Article  CAS  PubMed  Google Scholar 

  131. Cross AJ, Freedman ND, Ren J, Ward MH, Hollenbeck AR, Schatzkin A, et al. Meat consumption and risk of esophageal and gastric cancer in a large prospective study. Am J Gastroenterol. 2011;106(3):432–42.

    Article  CAS  PubMed  Google Scholar 

  132. Jakszyn P, Lujan-Barroso L, Agudo A, Bueno-de-Mesquita HB, Molina E, Sanchez MJ, et al. Meat and heme iron intake and esophageal adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition study. Int J Cancer. 2013;133(11):2744–50.

    CAS  PubMed  Google Scholar 

  133. Stolzenberg-Solomon RZ, Pietinen P, Taylor PR, Virtamo J, Albanes D. Prospective study of diet and pancreatic cancer in male smokers. Am J Epidemiol. 2002;155(9):783–92.

    Article  PubMed  Google Scholar 

  134. Isaksson B, Jonsson F, Pedersen NL, Larsson J, Feychting M, Permert J. Lifestyle factors and pancreatic cancer risk: a cohort study from the Swedish Twin Registry. Int J Cancer. 2002;98(2):480–2.

    Article  CAS  PubMed  Google Scholar 

  135. Michaud DS, Giovannucci E, Willett WC, Colditz GA, Fuchs CS. Dietary meat, dairy products, fat, and cholesterol and pancreatic cancer risk in a prospective study. Am J Epidemiol. 2003;157(12):1115–25.

    Article  PubMed  Google Scholar 

  136. Nothlings U, Wilkens LR, Murphy SP, Hankin JH, Henderson BE, Kolonel LN. Meat and fat intake as risk factors for pancreatic cancer: the multiethnic cohort study. J Natl Cancer Inst. 2005;97(19):1458–65.

    Article  PubMed  Google Scholar 

  137. Larsson SC, Hakanson N, Permert J, Wolk A. Meat, fish, poultry and egg consumption in relation to risk of pancreatic cancer: a prospective study. Int J Cancer. 2006;118(11):2866–70.

    Article  CAS  PubMed  Google Scholar 

  138. Heinen MM, Verhage BAJ, Goldbohm RA, van den Brandt PA. Meat and fat intake and pancreatic cancer risk in the Netherlands Cohort Study. Int J Cancer. 2009;125(5):1118–26.

    Article  CAS  PubMed  Google Scholar 

  139. Rohrmann S, Linseisen J, Nothlings U, Overvad K, Egeberg R, Tjonneland A, et al. Meat and fish consumption and risk of pancreatic cancer: results from the European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2013;132(3):617–24.

    Article  CAS  PubMed  Google Scholar 

  140. Ghorbani Z, Pourshams A, Malekshah AF, Sharatkhah M, Poustchi H, Hekmatdoost A. Major dietary protein sources in relation to pancreatic cancer: a large prospective study. Arch Iran Med. 2016;19(4):248–56.

    PubMed  Google Scholar 

  141. McCullough ML, Jacobs EJ, Shah R, Campbell PT, Wang Y, Hartman TJ, et al. Meat consumption and pancreatic cancer risk among men and women in the Cancer Prevention Study-II Nutrition Cohort. Cancer Causes Control. 2018;29(1):125–33.

    Article  PubMed  Google Scholar 

  142. Petrick JL, Castro-Webb N, Gerlovin H, Bethea TN, Li S, Ruiz-Narvaez EA, et al. A prospective analysis of intake of red and processed meat in relation to pancreatic cancer among african american women. Cancer Epidemiol Biomarkers Prev. 2020;29(9):1775–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang ZQ, Li QJ, Hao FB, Wu YQ, Liu S, Zhong GC. Adherence to the 2018 World Cancer Research Fund/American Institute for Cancer Research cancer prevention recommendations and pancreatic cancer incidence and mortality: a prospective cohort study. Cancer Med. 2020;9(18):6843–53.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Huang BZ, Wang S, Bogumil D, Wilkens LR, Wu L, Blot WJ, et al. Red meat consumption, cooking mutagens, NAT1/2 genotypes and pancreatic cancer risk in two ethnically diverse prospective cohorts. Int J Cancer. 2021. https://doi.org/10.1002/ijc.33598.

  145. Tasevska N, Cross AJ, Dodd KW, Ziegler RG, Caporaso NE, Sinha R. No effect of meat, meat cooking preferences, meat mutagens or heme iron on lung cancer risk in the prostate, lung, colorectal and ovarian cancer screening trial. Int J Cancer. 2011;128(2):402–11.

    Article  CAS  PubMed  Google Scholar 

  146. Linseisen J, Rohrmann S, Bueno-de-Mesquita B, Buchner FL, Boshuizen HC, Agudo A, et al. Consumption of meat and fish and risk of lung cancer: results from the European Prospective Investigation into Cancer and Nutrition. Cancer Causes Control. 2011;22(6):909–18.

    Article  PubMed  Google Scholar 

  147. Cai H, Sobue T, Kitamura T, Ishihara J, Sawada N, Iwasaki M, et al. Association between meat and saturated fatty acid intake and lung cancer risk: The Japan Public Health Center-based prospective study. Int J Cancer. 2020;147(11):3019–28.

  148. Gnagnarella P, Maisonneuve P, Bellomi M, Rampinelli C, Bertolotti R, Spaggiari L, et al. Red meat, Mediterranean diet and lung cancer risk among heavy smokers in the COSMOS screening study. Ann Oncol. 2013;24(10):2606–11.

  149. Chyou PH, Nomura AM, Stemmermann GN. A prospective study of diet, smoking, and lower urinary tract cancer. Ann Epidemiol. 1993;3(3):211–6.

    Article  CAS  PubMed  Google Scholar 

  150. Nagano J, Kono S, Preston DL, Moriwaki H, Sharp GB, Koyama K, et al. Bladder-cancer incidence in relation to vegetable and fruit consumption: a prospective study of atomic-bomb survivors. Int J Cancer. 2000;86(1):132–8.

    Article  CAS  PubMed  Google Scholar 

  151. Michaud DS, Holick CN, Giovannucci E, Stampfer MJ. Meat intake and bladder cancer risk in 2 prospective cohort studies. Am J Clin Nutr. 2006;84(5):1177–83.

    Article  CAS  PubMed  Google Scholar 

  152. Larsson SC, Johansson JE, Andersson SO, Wolk A. Meat intake and bladder cancer risk in a Swedish prospective cohort. Cancer Causes Control. 2009;20(1):35–40.

    Article  PubMed  Google Scholar 

  153. Ferrucci LM, Sinha R, Ward MH, Graubard BI, Hollenbeck AR, Kilfoy BA, et al. Meat and components of meat and the risk of bladder cancer in the NIH-AARP Diet and Health Study. Cancer. 2010;116(18):4345–53.

    Article  PubMed  Google Scholar 

  154. Jakszyn P, Gonzalez CA, Lujan-Barroso L, Ros MM, Bueno-de-Mesquita HB, Roswall N, et al. Red meat, dietary nitrosamines, and heme iron and risk of bladder cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Epidemiol Biomarkers Prev. 2011;20(3):555–9.

    Article  CAS  PubMed  Google Scholar 

  155. Fraser GE, Phillips R, Beeson WL. Hypertension, antihypertensive medication and risk of renal carcinoma in California Seventh-Day Adventists. Int J Epidemiol. 1990;19(4):832–8.

    Article  CAS  PubMed  Google Scholar 

  156. Daniel CR, Cross AJ, Graubard BI, Park Y, Ward MH, Rothman N, et al. Large prospective investigation of meat intake, related mutagens, and risk of renal cell carcinoma. Am J Clin Nutr. 2012;95(1):155–62.

    Article  CAS  PubMed  Google Scholar 

  157. Rohrmann S, Linseisen J, Overvad K, Wurtz AML, Roswall N, Tjonneland A, et al. Meat and fish consumption and the risk of renal cell carcinoma in the European prospective investigation into cancer and nutrition. Int J Cancer. 2015;136(5):E423–31.

    Article  CAS  PubMed  Google Scholar 

  158. Freedman ND, Cross AJ, McGlynn KA, Abnet CC, Park Y, Hollenbeck AR, et al. Association of meat and fat intake with liver disease and hepatocellular carcinoma in the NIH-AARP cohort. J Natl Cancer Inst. 2010;102(17):1354–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Li WQ, Park Y, McGlynn KA, Hollenbeck AR, Taylor PR, Goldstein AM, et al. Index-based dietary patterns and risk of incident hepatocellular carcinoma and mortality from chronic liver disease in a prospective study. Hepatology. 2014;60(2):588–97.

  160. Fedirko V, Trichopolou A, Bamia C, Duarte-Salles T, Trepo E, Aleksandrova K, et al. Consumption of fish and meats and risk of hepatocellular carcinoma: the European Prospective Investigation into Cancer and Nutrition (EPIC). Ann Oncol. 2013;24(8):2166–73.

  161. Ross JA, Kasum CM, Davies SM, Jacobs DR, Folsom AR, Potter JD. Diet and risk of leukemia in the Iowa Women’s Health Study. Cancer Epidemiol Biomarkers Prev. 2002;11(8):777–81.

    PubMed  Google Scholar 

  162. Saberi Hosnijeh F, Peeters P, Romieu I, Kelly R, Riboli E, Olsen A, et al. Dietary intakes and risk of lymphoid and myeloid leukemia in the European Prospective Investigation into Cancer and Nutrition (EPIC). Nutr Cancer. 2014;66(1):14–28.

    Article  CAS  PubMed  Google Scholar 

  163. Chiu BC, Cerhan JR, Folsom AR, Sellers TA, Kushi LH, Wallace RB, et al. Diet and risk of non-Hodgkin lymphoma in older women. JAMA. 1996;275(17):1315–21.

    Article  CAS  PubMed  Google Scholar 

  164. Zhang S, Hunter DJ, Rosner BA, Colditz GA, Fuchs CS, Speizer FE, et al. Dietary fat and protein in relation to risk of non-Hodgkin’s lymphoma among women. J Natl Cancer Inst. 1999;91(20):1751–8.

    Article  CAS  PubMed  Google Scholar 

  165. Rohrmann S, Linseisen J, Jakobsen MU, Overvad K, Raaschou-Nielsen O, Tjonneland A, et al. Consumption of meat and dairy and lymphoma risk in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2011;128(3):623–34.

  166. Daniel CR, Sinha R, Park Y, Graubard BI, Hollenbeck AR, Morton LM, et al. Meat intake is not associated with risk of non-Hodgkin lymphoma in a large prospective cohort of U.S. men and women. J Nutr. 2012;142(6):1074–80.

  167. Mills PK, Preston-Martin S, Annegers JF, Beeson WL, Phillips RL, Fraser GE. Risk factors for tumors of the brain and cranial meninges in Seventh-Day Adventists. Neuroepidemiology. 1989;8(5):266–75.

    Article  CAS  PubMed  Google Scholar 

  168. Rollison DE, Helzlsouer KJ. Processed meat consumption and adult gliomas in a Maryland cohort. Cancer Causes Control. 2004;15(1):99–100.

    Article  PubMed  Google Scholar 

  169. Michaud DS, Holick CN, Batchelor TT, Giovannucci E, Hunter DJ. Prospective study of meat intake and dietary nitrates, nitrites, and nitrosamines and risk of adult glioma. Am J Clin Nutr. 2009;90(3):570–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ward HA, Gayle A, Jakszyn P, Merritt M, Melin B, Freisling H, et al. Meat and haem iron intake in relation to glioma in the European Prospective Investigation into Cancer and Nutrition study. Eur J Cancer Prev. 2018;27(4):379–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dubrow R, Darefsky AS, Park Y, Mayne ST, Moore SC, Kilfoy B, et al. Dietary components related to N-nitroso compound formation: a prospective study of adult glioma. Cancer Epidemiol Biomarkers Prev. 2010;19(7):1709–22.

  172. Turesky RJ. Mechanistic evidence for red meat and processed meat intake and cancer risk: a follow-up on the International Agency for Research on Cancer evaluation of 2015. Chimia (Aarau). 2018;72(10):718-24.

    Article  CAS  Google Scholar 

  173. Cross AJ, Sinha R. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ Mol Mutagen. 2004;44(1):44–55.

    Article  CAS  PubMed  Google Scholar 

  174. Lauber SN, Ali S, Gooderham NJ. The cooked food derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine is a potent oestrogen: a mechanistic basis for its tissue-specific carcinogenicity. Carcinogenesis. 2004;25(12):2509–17.

    Article  CAS  PubMed  Google Scholar 

  175. Lauber SN, Gooderham NJ. The cooked meat-derived mammary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine promotes invasive behaviour of breast cancer cells. Toxicology. 2011;279(1–3):139–45.

    Article  CAS  PubMed  Google Scholar 

  176. Pratt MM, John K, MacLean AB, Afework S, Phillips DH, Poirier MC. Polycyclic aromatic hydrocarbon (PAH) exposure and DNA adduct semi-quantitation in archived human tissues. Int J Environ Res Public Health. 2011;8(7):2675–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zheng W, Gustafson DR, Sinha R, Cerhan JR, Moore D, Hong CP, et al. Well-done meat intake and the risk of breast cancer. J Natl Cancer Inst. 1998;90(22):1724–9.

  178. Gamage SMK, Dissabandara L, Lam AK, Gopalan V. The role of heme iron molecules derived from red and processed meat in the pathogenesis of colorectal carcinoma. Crit Rev Oncol Hematol. 2018;126:121–8.

    Article  CAS  PubMed  Google Scholar 

  179. Jantchou P, Morois S, Clavel-Chapelon F, Boutron-Ruault MC, Carbonnel F. Animal protein intake and risk of inflammatory bowel disease: The E3N prospective study. Am J Gastroenterol. 2010;105(10):2195–201.

    Article  CAS  PubMed  Google Scholar 

  180. Stidham RW, Higgins PDR. Colorectal Cancer in Inflammatory Bowel Disease. Clin Colon Rectal Surg. 2018;31(3):168–78.

  181. Becattini S, Taur Y, Pamer EG. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med. 2016;22(6):458–78.

  182. Ong HS, Yim HCH. Microbial factors in inflammatory diseases and cancers. Adv Exp Med Biol. 2017;1024:153-174.

  183. Chen Z, Franco OH, Lamballais S, Ikram MA, Schoufour JD, Muka T, et al. Associations of specific dietary protein with longitudinal insulin resistance, prediabetes and type 2 diabetes: The Rotterdam Study. Clin Nutr (Edinburgh, Scotland). 2020;39(1):242–9.

    Article  CAS  Google Scholar 

  184. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014;10(12):723–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bruning PF, Bonfrer JM, van Noord PA, Hart AA, de Jong-Bakker M, Nooijen WJ. Insulin resistance and breast-cancer risk. Int J Cancer 1992;52(4):511–16.

  186. Lifshitz K, Ber Y, Margel D. Role of metabolic syndrome in prostate cancer development. Eur Urol Focus. 2021;S2405-4569(21)00128-0.

  187. Cirillo F, Catellani C, Sartori C, Lazzeroni P, Amarri S, Street ME. Obesity, insulin resistance, and colorectal cancer: Could miRNA dysregulation play a role? Int J Mol Sci. 2019;20(12):2922.

  188. Arcidiacono B, Iiritano S, Nocera A, Possidente K, Nevolo MT, Ventura V, et al. Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms. Exp Diabetes Res. 2012;2012:789174.

  189. Fernandez CJ, George AS, Subrahmanyan NA, Pappachan JM. Epidemiological link between obesity, type 2 diabetes mellitus and cancer. World J Methodol. 2021;11(3):23–45.

    Article  CAS  PubMed  Google Scholar 

  190. Mu N, Zhu Y, Wang Y, Zhang H, Xue F. Insulin resistance: a significant risk factor of endometrial cancer. Gynecol Oncol. 2012;125(3):751–7.

    Article  CAS  PubMed  Google Scholar 

  191. Kaklamani VG, Linos A, Kaklamani E, Markaki I, Koumantaki Y, Mantzoros CS. Dietary fat and carbohydrates are independently associated with circulating insulin-like growth factor 1 and insulin-like growth factor-binding protein 3 concentrations in healthy adults. J Clin Oncol. 1999;17(10):3291–8.

    Article  CAS  PubMed  Google Scholar 

  192. Larsson SC, Wolk K, Brismar K, Wolk A. Association of diet with serum insulin-like growth factor I in middle-aged and elderly men. Am J Clin Nutr. 2005;81(5):1163-7.

    Article  CAS  PubMed  Google Scholar 

  193. Weroha SJ, Haluska P. The insulin-like growth factor system in cancer. Endocrinol Metab Clin North Am. 2012;41(2):335–50.

  194. Davies M, Gupta S, Goldspink G, Winslet M. The insulin-like growth factor system and colorectal cancer: clinical and experimental evidence. Int J Colorectal Dis. 2006;21(3):201–8.

    Article  CAS  PubMed  Google Scholar 

  195. Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet (London, England). 2004;363(9418):1346–53.

    Article  CAS  Google Scholar 

  196. Shi R, Yu H, McLarty J, Glass J. IGF-I and breast cancer: a meta-analysis. Int J Cancer. 2004;111(3):418–23.

    Article  CAS  PubMed  Google Scholar 

  197. Rowlands MA, Gunnell D, Harris R, Vatten LJ, Holly JM, Martin RM. Circulating insulin-like growth factor peptides and prostate cancer risk: a systematic review and meta-analysis. Int J Cancer. 2009;124(10):2416–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441–8.

    CAS  PubMed  Google Scholar 

  199. Ocvirk S, Wilson AS, Appolonia CN, Thomas TK, O'Keefe SJD. Fiber, fat, and colorectal cancer: New insight into modifiable dietary risk factors. Curr Gastroenterol Rep. 2019;21(11):62.

  200. Reddy BS. Nutritional factors and colon cancer. Crit Rev Food Sci Nutr. 1995;35(3):175–90.

    Article  CAS  PubMed  Google Scholar 

  201. Appel MJ, Meijers M, Van Garderen-Hoetmer A, Lamers CB, Rovati LC, Sprij-Mooij D, et al. Role of cholecystokinin in dietary fat-promoted azaserine-induced pancreatic carcinogenesis in rats. Br J Cancer. 1992;66(1):46–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Hernández AR, Boada LD, Mendoza Z, Ruiz-Suárez N, Valerón PF, Camacho M, et al. Consumption of organic meat does not diminish the carcinogenic potential associated with the intake of persistent organic pollutants (POPs). Environ Sci Pollut Res Int. 2017;24(5):4261–73.

  203. Guo W, Pan B, Sakkiah S, Yavas G, Ge W, Zou W, et al. Persistent organic pollutants in food: contamination sources, health effects and detection methods. Int J Environ Res Public Health. 2019;16(22):4361.

  204. Ljunggren SA, Helmfrid I, Salihovic S, van Bavel B, Wingren G, Lindahl M, et al. Persistent organic pollutants distribution in lipoprotein fractions in relation to cardiovascular disease and cancer. Environ Int. 2014;65:93–9.

    Article  CAS  PubMed  Google Scholar 

  205. Azadbakht L, Esmaillzadeh A. Red meat intake is associated with metabolic syndrome and the plasma C-reactive protein concentration in women. J Nutr. 2009;139(2):335–9.

    Article  CAS  PubMed  Google Scholar 

  206. Ley SH, Sun Q, Willett WC, Eliassen AH, Wu K, Pan A, et al. Associations between red meat intake and biomarkers of inflammation and glucose metabolism in women. Am J Clin Nutr. 2014;99(2):352–60.

  207. Samraj AN, Pearce OM, Laubli H, Crittenden AN, Bergfeld AK, Banda K, et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci USA. 2015;112(2):542–7.

    Article  CAS  PubMed  Google Scholar 

  208. Chaturvedi P, Kamat PK, Kalani A, Familtseva A, Tyagi SC. High methionine diet poses cardiac threat: a molecular insight. J Cell Physiol. 2016;231(7):1554–61.

    Article  CAS  PubMed  Google Scholar 

  209. Cellarier E, Durando X, Vasson MP, Farges MC, Demiden A, Maurizis JC, et al. Methionine dependency and cancer treatment. Cancer Treat Rev. 2003;29(6):489–99.

    Article  CAS  PubMed  Google Scholar 

  210. Andersson AM, Skakkebaek NE. Exposure to exogenous estrogens in food: possible impact on human development and health. Eur J Endocrinol. 1999;140(6):477–85.

    Article  CAS  PubMed  Google Scholar 

  211. Schneider HPG, Mueck AO, Kuhl H. IARC monographs program on carcinogenicity of combined hormonal contraceptives and menopausal therapy. Climacteric. 2005;8(4):311–6.

  212. Feigelson HS, Henderson BE. Estrogens and breast cancer. Carcinogenesis. 1996;17(11):2279–84.

  213. Greenwald P, Caputo TA, Wolfgang PE. Endometrial cancer after menopausal use of estrogens. Obstet Gynecol. 1977;50(2):239–43.

    CAS  PubMed  Google Scholar 

  214. Nelles JL, Hu WY, Prins GS. Estrogen action and prostate cancer. Expert Rev Endocrinol Metab. 2011;6(3):437–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. O’Callaghan NJ, Toden S, Bird AR, Topping DL, Fenech M, Conlon MA. Colonocyte telomere shortening is greater with dietary red meat than white meat and is attenuated by resistant starch. Clin Nutr. 2012;31(1):60–4.

    Article  CAS  PubMed  Google Scholar 

  216. Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs DR Jr. Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2008;88(5):1405–12.

    CAS  PubMed  Google Scholar 

  217. Rudolph KL, Millard M, Bosenberg MW, DePinho RA. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet. 2001;28(2):155–9.

    Article  CAS  PubMed  Google Scholar 

  218. Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009;361(24):2353–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Willeit P, Willeit J, Mayr A, Weger S, Oberhollenzer F, Brandstatter A, et al. Telomere length and risk of incident cancer and cancer mortality. JAMA. 2010;304(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  220. Shen G, Huang JY, Huang YQ, Feng YQ. The Relationship between Telomere Length and Cancer Mortality: Data from the 1999–2002 National Healthy and Nutrition Examination Survey (NHANES). J Nutr Health Aging. 2020;24(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  221. Bao Y, Prescott J, Yuan C, Zhang M, Kraft P, Babic A, et al. Leucocyte telomere length, genetic variants at the TERT gene region and risk of pancreatic cancer. 2017;66(6):1116-22.

  222. https://www.aicr.org/resources/media-library/10-cancer-prevention-recommendations/.

  223. https://www.wcrf.org/wp-content/uploads/2021/01/Recommendations.pdf.

  224. Rock CL, Thomson C, Gansler T, Gapstur SM, McCullough ML, Patel AV, Andrews KS. American Cancer Society Guidelines on Nutrition and Physical Activity for Cancer Prevention. CA Cancer J Clin. 2020;70, 245–71.

  225. Budhathoki S, Sawada N, Iwasaki M, Yamaji T, Goto A, Kotemori A, et al. Association of animal and plant protein intake with all-cause and cause-specific mortality in a Japanese Cohort. JAMA Intern Med. 2019;179(11):1509–18.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Zhu B, Sun Y, Qi L, Zhong R, Miao X. Dietary legume consumption reduces risk of colorectal cancer: evidence from a meta-analysis of cohort studies. Sci Rep. 2015;5:8797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Li J, Mao QQ. Legume intake and risk of prostate cancer: a meta-analysis of prospective cohort studies. Oncotarget. 2017;8(27):44776–44784.

  228. Papandreou C, Becerra-Tomas N, Bullo M, Martinez-Gonzalez MA, Corella D, Estruch R, et al. Legume consumption and risk of all-cause, cardiovascular, and cancer mortality in the PREDIMED study. Clin Nutr. 2019;38(1):348–56.

  229. Tian S, Xu Q, Jiang R, Han T, Sun C, Na L. Dietary protein consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Nutrients. 2017;9(9):982.

  230. Kim K, Hyeon J, Lee SA, Kwon SO, Lee H, Keum N, et al. Role of total, red, processed, and white meat consumption in stroke incidence and mortality: a systematic review and meta-analysis of prospective cohort studies. J Am Heart Assoc. 2017;6(9):e005983.

  231. Micha R, Michas G, Mozaffarian D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes--an updated review of the evidence. Curr Atheroscler Rep. 2012;14(6):515–24.

  232. Kwok CS, Gulati M, Michos ED, Potts J, Wu P, Watson L, et al. Dietary components and risk of cardiovascular disease and all-cause mortality: a review of evidence from meta-analyses. Eur J Prev Cardiol. 2019;26(13):1415–29.

Download references

Acknowledgment

We thank Drs. Demetrius Albanes, Hannah Arem, Eunyoung Cho, Yashvee Dunneram, Brian Z. Huang, Petra Jones, Rena R. Jones, Christiana Kartsonaki, Ai Seon Kuan, Tricia Li, Hung N. Luu, Kirstin Pirie, Antonio Giampiero Russo, Veronica Wendy Setiawan, Rachael Stolzenberg-Solomon, Siân Sweetland, Mary K. Townsend, Shelley S. Tworoger, Margaret E. Wright, Xin Xu, and Xuehong Zhang, for kindly providing additional data for this meta-analysis.

Funding

There is no funding source for this study.

Author information

Authors and Affiliations

Authors

Contributions

Maryam S. Farvid: Study concept and design, data extraction and statistical analysis, interpretation of data, drafting of manuscript, critical revision of the manuscript for important intellectual content, and approval of the final manuscript for submission. Elkhansa Sidahmed: Helped with data extraction, interpretation of data, critical revision of the manuscript for important intellectual content, and approval of the final manuscript for submission. Nicholas D. Spence: Helped with interpretation of data, critical revision of the manuscript for important intellectual content, and approval of the final manuscript for submission. Kingsly Mante Angua: Helped with data extraction, and approval of the final manuscript for submission. Bernard A. Rosner: Helped with the interpretation of data and approval of the final manuscript for submission. Junaidah B. Barnett: Helped with the interpretation of data and writing the discussion section, critical revision of the manuscript for important intellectual content, and approval of the final manuscript for submission.

Corresponding author

Correspondence to Maryam S. Farvid.

Ethics declarations

Conflict of interest

The authors of this study have no conflict of interest or any financial disclosures to make.

Data sharing

Data are available to share.

Ethical approval

NA.

Patient and public involvement

NA.

Transparency

All authors affirm that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farvid, M.S., Sidahmed, E., Spence, N.D. et al. Consumption of red meat and processed meat and cancer incidence: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol 36, 937–951 (2021). https://doi.org/10.1007/s10654-021-00741-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-021-00741-9

Keywords

Navigation