Skip to main content

Advertisement

Log in

Predicting soil nutrient contents using Landsat OLI satellite images in rain-fed agricultural lands, northwest of Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil nutrients are the key factors in soil fertility, which have important roles in plant growth. Determining soil nutrient contents, including macro and micronutrients, is of crucial importance in agricultural productions. Conventional laboratory techniques for determining soil nutrients are expensive and time-consuming. This research was aimed to develop linear regression (LR) models for remote sensing of total nitrogen (TN) (mg/kg), available phosphorous (AP) (mg/kg), available potassium (AK) (mg/kg), and micronutrients such as iron (Fe) (mg/kg), manganese (Mn) (mg/kg), zinc (Zn) (mg/kg), and copper (Cu) (mg/kg) extracted by DTPA in rain-fed agricultural lands in the northwest of Iran. First, 101 soil samples were collected from 0–30 cm of these lands and analyzed for selected nutrient contents. Then a linear regression along with principal component analysis was conducted to correlate soil nutrient contents with reflectance data of different Landsat OLI bands. Finally, the spatial distributions of soil nutrients were drawn. The results showed that there were linear relationships between soil nutrient contents and standardized PC1 (ZPC1). The highest significant determination coefficient with an R2 value of 0.46 and the least relative error (%) value of 11.97% were observed between TN and ZPC1. The accuracy of the other LR’s developed among other soil nutrient contents and remotely sensed data was relatively lower than that obtained for TN. According to the results obtained from this study, although remote sensing techniques may quickly assess soil nutrients, new techniques, technologies, and models may be needed to have a more accurate prediction of soil nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alho, C. F. B. V., Samuel-Rosa, A., Martins, G. C., Hiemstra, T., Kuyper, T. W., & Teixeira, W. G. (2019). Spatial variation of carbon and nutrients stocks in Amazonian Dark Earth. Geoderma, 337, 322–332.

    Article  CAS  Google Scholar 

  • Bai, X., Gao, J., Wang, S., Cai, H., Chen, Z., Zhou, J. (2020). Excessive nutrient balance surpluses in newly built solar greenhouses over five years leads to high nutrient accumulations in soil. Agriculture, Ecosystems & Environment, 288:106717.

  • Baig, M. B., Shahid, S. A., & Straquadine, G. S. (2013). Making rainfed agriculture sustainable through environmental friendly technologies in Pakistan: A review. International Soil and Water Conservation Research, 1(2), 36–52.

    Article  Google Scholar 

  • Chi, Y., Shi, H., Zheng, W., & Sun, J. (2018). Simulating spatial distribution of coastal soil carbon content using a comprehensive land surface factor system based on remote sensing. Science of the Total Environment, 628, 384–399.

    Article  CAS  Google Scholar 

  • Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., & Lambin, E. (2004). Review Article Digital change detection methods in ecosystem monitoring: A review. International Journal of Remote Sensing, 25(9), 1565–1596.

    Article  Google Scholar 

  • Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58(3), 453–467.

    Article  Google Scholar 

  • Gökkaya, K., Thomas, V., Noland, T. L., McCaughey, H., Morrison, I., & Treitz, P. (2015). Prediction of macronutrients at the canopy level using spaceborne imaging spectroscopy and LiDAR data in a mixedwood boreal forest. Remote Sensing, 7(7), 9045–9069.

    Article  Google Scholar 

  • Goulding, K., Jarvis, S., & Whitmore, A. (2008). Optimizing nutrient management for farm systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 667–680.

    Article  CAS  Google Scholar 

  • Gras, J.-P., Barthès, B. G., Mahaut, B., & Trupin, S. (2014). Best practices for obtaining and processing field visible and near infrared (VNIR) spectra of topsoils. Geoderma, 214, 126–134.

    Article  CAS  Google Scholar 

  • Hahs-Vaughn, D. L. (2016). Applied multivariate statistical concepts. Taylor & Francis.

    Book  Google Scholar 

  • Hengl, T., Leenaars, J. G., Shepherd, K. D., Walsh, M. G., Heuvelink, G. B., Mamo, T., Tilahun, H., Berkhout, E., Cooper, M., & Fegraus, E. (2017). Soil nutrient maps of Sub-Saharan Africa: Assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 109(1), 77–102.

    Article  CAS  Google Scholar 

  • Iranian soil and water institute. (1991). http://www.swri.ir/

  • Irshad, M., Inoue, M., Ashraf, M., Delower, H. K., & Tsunekawa, A. (2007). Land desertification-An emerging threat to environment and food security of Pakistan. Journal of Applied Sciences, 7(8), 1199–1205.

    Article  Google Scholar 

  • Jackson, M. (1973). Soil chemical analysis (Indian). Prentice Hall of India Pvt. Ltd.

    Google Scholar 

  • Keshavarzi, A., Sarmadian, F., Omran, E.-S.E., & Iqbal, M. (2015). A neural network model for estimating soil phosphorus using terrain analysis. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 127–135.

    Article  Google Scholar 

  • Kosheleva, N. E., Vlasov, D. V., Korlyakov, I. D., & Kasimov, N. S. (2018). Contamination of urban soils with heavy metals in Moscow as affected by building development. Science of the Total Environment, 636, 854–863.

    Article  CAS  Google Scholar 

  • Li, J., Ma, X., Zhang, C. (2020). Predicting the spatiotemporal variation in soil wind erosion across Central Asia in response to climate change in the 21st century. Science of The Total Environment, 709:136060.

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421–428.

    Article  CAS  Google Scholar 

  • Liu, X., Ma, J., Ma, Z.-W., & Li, L.-H. (2017). Soil nutrient contents and stoichiometry as affected by land-use in an agro-pastoral region of northwest China. CATENA, 150, 146–153.

    Article  CAS  Google Scholar 

  • Lv, Y., & Li, B. (2006). Pedology, Agriculture Press.

    Google Scholar 

  • Minasny, B., Finke, P., Stockmann, U., Vanwalleghem, T., & McBratney, A. B. (2015). Resolving the integral connection between pedogenesis and landscape evolution. Earth-Science Reviews, 150, 102–120.

    Article  Google Scholar 

  • Minasny, B., & McBratney, A. B. (2006). Mechanistic soil–landscape modelling as an approach to developing pedogenetic classifications. Geoderma, 133(1–2), 138–149.

    Article  Google Scholar 

  • Nam, J., Chang, W., & Kang, D. (2010). Carrying capacity of an uninhabited island off the southwestern coast of Korea. Ecological Modelling, 221(17), 2102–2107.

    Article  Google Scholar 

  • Nelson, D. W., Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods, 5, 961–1010.

  • Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. vol 939. US Department of Agriculture.

  • Rahmati, M., & Hamzehpour, N. (2018). Effectiveness of spectral data reduction in detection of salt-affected soils in a small study area. Desert, 23(1), 97–106.

    Google Scholar 

  • Raj, A., Chakraborty, S., Duda, B. M., Weindorf, D. C., Li, B., Roy, S., Sarathjith, M., Das, B. S., & Paulette, L. (2018). Soil mapping via diffuse reflectance spectroscopy based on variable indicators: An ordered predictor selection approach. Geoderma, 314, 146–159.

    Article  CAS  Google Scholar 

  • Sinfield, J. V., Fagerman, D., & Colic, O. (2010). Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils. Computers and Electronics in Agriculture, 70(1), 1–18.

    Article  Google Scholar 

  • Smith, W. K., Dannenberg, M. P., Yan, D., Herrmann, S., Barnes, M. L., Barron-Gafford, G. A., Biederman, J. A., Ferrenberg, S., Fox, A. M., Hudson, A. (2019). Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sensing of Environment, 233, 111401.

  • Song, X.-D., Brus, D. J., Liu, F., Li, D.-C., Zhao, Y.-G., Yang, J.-L., & Zhang, G.-L. (2016). Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin. China. Geoderma, 261, 11–22.

    Article  CAS  Google Scholar 

  • Song, Y.-Q., Zhao, X., Su, H.-Y., Li, B., Hu, Y.-M., & Cui, X.-S. (2018). Predicting spatial variations in soil nutrients with hyperspectral remote sensing at regional scale. Sensors, 18(9), 3086.

    Article  CAS  Google Scholar 

  • Tao, Y., Zhou, X.-B., Zhang, S.-H., Lu, H.-Y., Shao, H. (2020). Soil nutrient stoichiometry on linear sand dunes from a temperate desert in Central Asia. Catena, 195:104847.

  • Tavakoli, M. T., Chenari, A. I., Rezaie, M., Tavakoli, A., Shahsavari, M., & Mousavi, S. R. (2014). The importance of micronutrients in agricultural production. Advances in Environmental Biology, 1, 31–36.

    Google Scholar 

  • Voss, R. (1998). Micronutrients. Iowa State University, Department of Agronomy, USA Available at [Access date: 0202 2017]: agronext iastate edu.

  • Wang, S., Jin, X., Adhikari, K., Li, W., Yu, M., Bian, Z., & Wang, Q. (2018). Mapping total soil nitrogen from a site in northeastern China. CATENA, 166, 134–146.

    Article  CAS  Google Scholar 

  • Whitehead, D., Schipper, L. A., Pronger, J., Moinet, G. Y., Mudge, P. L., Pereira, R. C., Kirschbaum, M. U., McNally, S. R., Beare, M. H., & Camps-Arbestain, M. (2018). Management practices to reduce losses or increase soil carbon stocks in temperate grazed grasslands: New Zealand as a case study. Agriculture, Ecosystems & Environment, 265, 432–443.

    Article  Google Scholar 

  • Xu, Y., Smith, S. E., Grunwald, S., Abd-Elrahman, A., Wani, S. P., & Nair, V. D. (2018). Estimating soil total nitrogen in smallholder farm settings using remote sensing spectral indices and regression kriging. CATENA, 163, 111–122.

    Article  CAS  Google Scholar 

  • Yan, T., Lü, X.-T., Zhu, J.-J., Yang, K., Yu, L.-Z., & Gao, T. (2018). Changes in nitrogen and phosphorus cycling suggest a transition to phosphorus limitation with the stand development of larch plantations. Plant and Soil, 422(1–2), 385–396.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Miran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miran, N., Rasouli Sadaghiani, M.H., Feiziasl, V. et al. Predicting soil nutrient contents using Landsat OLI satellite images in rain-fed agricultural lands, northwest of Iran. Environ Monit Assess 193, 607 (2021). https://doi.org/10.1007/s10661-021-09397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09397-0

Keywords

Navigation