Skip to main content
Log in

Numerical analysis of fractional dynamical behavior of Atomic Force Microscopy

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We investigate the nonlinear dynamic model of the Atomic Force Microscopy model (AFM) with the influence of a viscoelastic term. The mathematical model is based on non-resonant and almost linear responses, together with the deflection of the microcantilever, and also considers the interaction forces between the atoms of the analysis tip and the sample surface. Our results show the influence on the nonlinear dynamics of this model considering the term viscoelastic. We also analyzed the generalized model with the fractional calculus with the Riemann–Liouville operator derivative applied to the viscoelastic term and thus having the fractional nonlinear dynamics of the AFM system. For the analysis of the system, we used the classic tooling of nonlinear dynamics (Bifurcation diagram, 0–1 Test, and Poincaré maps, and the Maximum Lyapunov Exponent), however, the results showed the chaotic and periodic regions of the fractional system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Nader, K. Laxminarayana, Mechatr. 14, 8 (2004)

    Google Scholar 

  2. M. H. Korayem, S. Zafari, A. Amanati, M. Damircheli, N. Ebrahimi. The Int J Adv Manuf Technol 50 (2010)

  3. A. M. Tusset, M. A. Ribeiro, W. B. Lenz, R. T. Rocha, J. M. Balthazar. J Vib Eng Technol. (2019)

  4. K. dos Santos Rodrigues, J. M. Balthazar, A. M. Tusset, B. R. de Pontes, Á. M. Bueno. Int J Control Autom Syst, 25 (2014)

  5. S. Rützel, S. I. Lee, A. Raman. Proc. R. Soc. Lond. 459 (2003)

  6. M. A. Ribeiro, J. M. Balthazar, W. B. Lenz, R. T. Rocha, A. M. Tusset. Shock. Vib, 2020

  7. A. M. Tusset, J. M. Balthazar, R. T. Rocha, M. A. Ribeiro, W. B. Lenz. Nonlinear Dyn, 99 (2020)

  8. I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 2nd edn. (Elsevier, Slovak Republic, 1998)

    MATH  Google Scholar 

  9. R. Arvind, J. Melcher, R. Tung. Nano Today 3 (2008)

  10. F. Jamitzky, M. Stark, W. Bunk, W. M. Heckl, R. W. Stark, Nanotechnology, 17 (2016)

  11. R. W. Stark, Mater. Today, 13 (2010)

  12. C. Wang, N. Pai, H. Yau, Commun Nonlinear Sci, 15 (2010)

  13. G.A. Gottwald, I. Melbourne, 460 (Proc. R. Soc, Lond, 2004)

  14. G. A. Gottwald, I. Melbourne, Physica D, 212 (2015)

  15. G. Litak, A. Syta, M. Wiercigroch, Chaos Soliton Fract. 40 (2009)

  16. D. Bernardini, G. Litak, J. Braz. Soc. Mech. Sci. Eng. 38, 5 (2016)

    Article  Google Scholar 

  17. I. Petráš, Fractional-order nonlinear systems: modeling, analysis and simulation, 1st edn. (Springer, Berling, 2011)

    Book  Google Scholar 

  18. A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Physica D, 16, (1985)

  19. K. Diethelm, A. D. Freed, Forschung und wissenschaftliches Rechnen, (1999)

  20. K. Diethelm, N.J. Ford, A.D. Freed, Numer. Algorithms 36, (2004)

  21. K. Diethelm, Computing 71 (2003)

  22. E. Hairer, C. Lubich, M. Schlichte, SIAM J. Sci. Statist. Comput. 6(1985)

  23. R. Garrappa, Int. J. Comput. Math., 87, (2010)

  24. M. F. Danca, M. Fečkan, N. Kuznetsov, G. Chen, Nonlinear Dyn, 98 (2019)

  25. A. Bonfanti, J.L. Kaplan, G. Charras, A. Kabla, Soft Matter 16, 26 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio A. Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, M.A., Tusset, A.M., Lenz, W.B. et al. Numerical analysis of fractional dynamical behavior of Atomic Force Microscopy. Eur. Phys. J. Spec. Top. 230, 3655–3661 (2021). https://doi.org/10.1140/epjs/s11734-021-00271-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00271-1

Navigation