Skip to main content
Log in

Stem Cells in Adult Mice Ovaries Form Germ Cell Nests, Undergo Meiosis, Neo-oogenesis and Follicle Assembly on Regular Basis During Estrus Cycle

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

A Correction to this article was published on 19 October 2021

This article has been updated

Abstract

Very small embryonic-like (VSELs) and ovarian (OSCs) stem cells are located in adult mammalian ovary surface epithelium (OSE). OSCs can expand long-term and differentiate into oocyte-like structures in vitro and have resulted in birth of fertile pups. Lineage tracing studies have provided evidence to suggest OSCs differentiation into oocytes in vivo. But how these stem cells function under normal physiological conditions has not yet been well worked out. Besides studying STRA-8 and SCP-3 expression in enzymatically isolated OSE cells smears, mice were injected BrdU to track mitosis, meiosis and follicle assembly. H&E stained OSE cells during late diestrus and proestrus showed VSELs undergoing asymmetrical cell divisions to give rise to slightly bigger OSCs which in turn underwent symmetrical cell divisions followed by clonal expansion (rapid expansion with incomplete cytokinesis) during early estrus to form germ cell nests (GCN). OCT-4, SSEA-1, MVH and DAZL positive cells in GCN expressed Erα, Erβ and FSHR, were interconnected by ring canals (TEX-14), showed mitochondrial aggregation (Cytochrome C) and Balbiani Body (TRAL). Apoptosis in ‘nurse’ cells was marked by PARP and putative oocytes were clearly visualized. BrdU was detected in cells undergoing mitosis/meiosis and also in an oocyte of secondary follicle. FACS sorted, green fluorescent protein (GFP) positive VSELs upon transplantation resulted in GFP positive GCN suggesting crucial role for VSELs in adult ovaries. Results suggest that various events described during oogenesis and follicle assembly in fetal ovaries are recapitulated on regular basis in adult ovary and result in the formation of follicles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Materials

All data is available in the manuscript and in supplement.

Change history

References

  1. Johnson, J., Canning, J., Kaneko, T., Pru, J. K., & Tilly, J. L. (2004). Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature, 428(6979), 145–150.

    Article  CAS  PubMed  Google Scholar 

  2. Bhartiya, D., & Patel, H. (2018). Ovarian stem cells-resolving controversies. Journal of Assisted Reproduction and Genetics, 35(3), 393–398.

    Article  PubMed  Google Scholar 

  3. Bhartiya, D., Shaikh, A., Anand, S., Patel, H., Kapoor, S., Sriraman, K., Parte, S., & Unni, S. (2016). Endogenous, very small embryonic-like stem cells: Critical review, therapeutic potential and a look ahead. Human Reproduction Update, 23(1), 41–76.

    Article  PubMed  CAS  Google Scholar 

  4. Ratajczak, M. Z., Ratajczak, J., & Kucia, M. (2019). Very small embryonic-like stem cells (VSELs): An update and future directions. Circulation Research, 124(2), 208–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wagner, M., Yoshihara, M., Douagi, I., Damdimopoulos, A., Panula, S., Petropoulos, S., Lu, H., Pettersson, K., Palm, K., Katayama, S., Hovatta, O., Kere, J., Lanner, F., & Damdimopoulou, P. (2020). Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nature Communications, 11(1), 1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhartiya, D., & Sharma, D. (2020). Ovary does harbor stem cells-size of the cells matter! Journal of Ovarian Research, 13(1), 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhartiya, D., Kaushik, A., Singh, P., & Sharma, D. (2021). Will Single-Cell RNAseq decipher stem cells biology in normal and cancerous tissues? Human Reproduction Update, 27(2), 421.

    Article  PubMed  Google Scholar 

  8. Martin, J. J., Woods, D. C., & Tilly, J. L. (2019). Implications and current limitations of oogenesis from female germline or oogonial stem cells in adult mammalian ovaries. Cells, 8(2), 93.

    Article  CAS  PubMed Central  Google Scholar 

  9. Silvestris, E., Cafforio, P., D’Oronzo, S., Felici, C., Silvestris, F., & Loverro, G. (2018). In vitro differentiation of human oocyte-like cells from oogonial stem cells: Single-cell isolation and molecular characterization. Human Reproduction, 33(3), 464–473.

    Article  CAS  PubMed  Google Scholar 

  10. Clarkson, Y. L., McLaughlin, M., Waterfall, M., Dunlop, C. E., Skehel, P. A., Anderson, R. A., & Telfer, E. E. (2018). Initial characterization of adult human ovarian cell populations isolated by DDX4 expression and aldehyde dehydrogenase activity. Scientific Reports, 8(1), 6953.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Virant-Klun, I. (2015). Postnatal oogenesis in humans: A review of recent findings. Stem Cells and Cloning: Advances and Applications, 8, 49–60.

    Google Scholar 

  12. Woods, D. C., & Tilly, J. L. (2013). Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nature Protocols, 8(5), 966–988.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Parte, S., Bhartiya, D., Telang, J., Daithankar, V., Salvi, V., Zaveri, K., & Hinduja, I. (2011). Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells and Development, 20(8), 1451–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Virant-Klun, I., Zech, N., Rozman, P., Vogler, A., Cvjeticanin, B., Klemenc, P., Malicev, E., & Meden-Vrtovec, H. (2008). Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation, 76(8), 843–856.

    Article  CAS  PubMed  Google Scholar 

  15. Virant-Klun, I. (2018). Functional testing of primitive oocyte-like cells developed in ovarian surface epithelium cell culture from small VSEL-like stem cells: Can they be fertilized one day? Stem Cell Reviews and Reports, 14(5), 715–721.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, N., Satirapod, C., Ohguchi, Y., Park, E. S., Woods, D. C., & Tilly, J. L. (2017). Genetic studies in mice directly link oocytes produced during adulthood to ovarian function and natural fertility. Scientific Reports, 7(1), 10011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Guo, K., Li, C. H., Wang, X. Y., He, D. J., & Zheng, P. (2016). Germ stem cells are active in postnatal mouse ovary under physiological conditions. Molecular Human Reproduction, 22(5), 316–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Patel, H., Bhartiya, D., Parte, S., Gunjal, P., Yedurkar, S., & Bhatt, M. (2013). Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3. Journal of Ovarian Research, 6, 52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patel, H., Bhartiya, D., & Parte, S. (2018). Further characterization of adult sheep ovarian stem cells and their involvement in neo-oogenesis and follicle assembly. Journal of Ovarian Research, 11(1), 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lei, L., & Spradling, A. C. (2016). Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells. Science, 352(6281), 95–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pepling, M. E., Wilhelm, J. E., O’Hara, A. L., Gephardt, G. W., & Spradling, A. C. (2007). Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proceedings of the National Academy of Sciences of the USA, 104(1), 187–192.

    Article  CAS  PubMed  Google Scholar 

  22. Pepling, M. E. (2012). Follicular assembly: Mechanisms of action. Reproduction, 143(2), 139–149.

    Article  CAS  PubMed  Google Scholar 

  23. Pepling, M. E., & Spradling, A. C. (2001). Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Developmental Biology, 234(2), 339–351.

    Article  CAS  PubMed  Google Scholar 

  24. Gamwell, L. F., Collins, O., & Vanderhyden, B. C. (2012). The mouse ovarian surface epithelium contains a population of LY6A (SCA-1) expressing progenitor cells that are regulated by ovulation-associated factors. Biology of Reproduction, 87(4), 80.

    Article  PubMed  CAS  Google Scholar 

  25. Kaushik, A., & Bhartiya, D. (2020). Additional evidence to establish existence of two stem cell populations including VSELs and SSCs in adult mouse testes. Stem Cell Reviews and Reports, 16(5), 992–1004.

    Article  CAS  PubMed  Google Scholar 

  26. Zuba-Surma, E. K., Kucia, M., Wu, W., Klich, I., Lillard, J. W., Jr., Ratajczak, J., & Ratajczak, M. Z. (2008). Very small embryonic like stem cells are present in adult murine organs: Image Stream based morphological analysis and distribution studies. Cytometry Part A, 73A, 1116–1127.

    Article  CAS  Google Scholar 

  27. Vrtačnik, P., Kos, Š, Bustin, S. A., Marc, J., & Ostanek, B. (2014). Influence of trypsinization and alternative procedures for cell preparation before RNA extraction on RNA integrity. Analytical Biochemistry, 463, 38–44.

    Article  PubMed  CAS  Google Scholar 

  28. Rosas-Arellano, A., Villalobos-González, J. B., Palma-Tirado, L., Beltrán, F. A., Cárabez-Trejo, A., Missirlis, F., & Castro, M. A. (2016). A simple solution for antibody signal enhancement in immunofluorescence and triple immunogold assays. Histochemistry and Cell Biology, 146(4), 421–430.

    Article  CAS  PubMed  Google Scholar 

  29. Sriraman, K., Bhartiya, D., Anand, S., & Bhutda, S. (2015). Mouse ovarian very small embryonic-like stem cells resist chemotherapy and retain ability to initiate oocyte-specific differentiation. Reproductive Sciences, 22(7), 884–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parte, S., Bhartiya, D., Patel, H., Daithankar, V., Chauhan, A., Zaveri, K., & Hinduja, I. (2014). Dynamics associated with spontaneous differentiation of ovarian stem cells in vitro. Journal of Ovarian Research, 7, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Notarianni, E. (2011). Reinterpretation of evidence advanced for neo-oogenesis in mammals, in terms of a finite oocyte reserve. Journal of Ovarian Research, 4(1), 1.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Muñoz-Velasco, I., Ortíz, R., Echeverría, O. M., Escobar, M. L., & Vázquez-Nin, G. H. (2013). Characterization of the pre-meiotic S phase through incorporation of BrdU during spermatogenesis in the rat. The Journal of Histochemistry and Cytochemistry, 61(9), 680–689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lei, L., & Spradling, A. C. (2013). Mouse primordial germ cells produce cysts that partially fragment prior to meiosis. Development, 140(10), 2075–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. White, Y. A. R., Woods, D. C., Takai, Y., Ishihara, O., Seki, H., & Tilly, J. (2012). Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nature of Medicine, 18, 413–421.

    Article  CAS  Google Scholar 

  35. Bhartiya, D., Sriraman, K., Parte, S., & Patel, H. (2013). Ovarian stem cells: Absence of evidence is not evidence of absence. Journal of Ovarian Research, 6(1), 65.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lei, L., & Spradling, A. C. (2013). Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proceedings of the National Academy of Sciences, 110(21), 8585–8590.

    Article  CAS  Google Scholar 

  37. Woods, D. C., White, Y. A., & Tilly, J. L. (2013). Purification of oogonial stem cells from adult mouse and human ovaries: An assessment of the literature and a view toward the future. Reproductive Sciences, 20(1), 7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu, M., Xiong, J., Ma, L., Lu, Z., Qin, X., Luo, A., Zhang, J., Xie, H., Shen, W., & Wang, S. (2018). Enrichment of female germline stem cells from mouse ovaries using the differential adhesion method. Cell and Physiology Biochemistry, 46, 2114–2126.

    Article  CAS  Google Scholar 

  39. Kenda Suster, N., & Virant-Klun, I. (2019). Presence and role of stem cells in ovarian cancer. World Journal of Stem Cells., 11(7), 383–397.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Toyooka, Y., Tsunekawa, N., Takahashi, Y., Matsui, Y., Satoh, M., & Noce, T. (2000). Expression and intracellular localization of mouse VASA-homologue protein during germ cell development. Mechanisms of Development, 93(1–2), 139–149.

    Article  CAS  PubMed  Google Scholar 

  41. He, B., Mi, Y., & Zhang, C. (2013). Gonadotropins regulate ovarian germ cell mitosis/meiosis decision in the embryonic chicken. Molecular and Cellular Endocrinology, 370(1–2), 32–41.

    Article  CAS  PubMed  Google Scholar 

  42. Kojima, M. L., de Rooij, D. G., & Page, D. C. (2019). Amplification of a broad transcriptional program by a common factor triggers the meiotic cell cycle in mice. eLife, 8, e43738.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the help provided by Dr SM Metkari at the Animal Experimental Facility, NIRRH for transplanting VSELs in mice ovaries. Help from Gayatri and Sushma for flow cytometry and Shobha, Reshma and Swati for confocal microscopy is acknowledged.

Funding

Financial support was provided by Indian Council of Medical Research, Government of India, New Delhi, India. DS acknowledges SRF fellowship from ICMR (#10832).

Author information

Authors and Affiliations

Authors

Contributions

DS performed the experiments, generated results, data interpretation and manuscript preparation. DB designed the study, arranged funds, data interpretation and manuscript preparation. Both authors agree to the final version of submitted manuscript.

Corresponding author

Correspondence to Deepa Bhartiya.

Ethics declarations

Ethical Approval

All experiments carried out in the present study were approved by NIRRH Institutional Animal Ethics Committee (78/GO/ReBi/SL/99/CPCSEA dated-11/03/1999).

Consent to Publish

Institute accession number NIRRH No. REV/1074/05-2021.

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The wrong Supplementary file for Supplementary file 1 was originally published with this article; it has now been replaced with the correct file.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1.75 MB)

(AVI 486 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Bhartiya, D. Stem Cells in Adult Mice Ovaries Form Germ Cell Nests, Undergo Meiosis, Neo-oogenesis and Follicle Assembly on Regular Basis During Estrus Cycle. Stem Cell Rev and Rep 17, 1695–1711 (2021). https://doi.org/10.1007/s12015-021-10237-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10237-4

Keywords

Navigation