Skip to main content

Advertisement

Log in

Assessment of fungal bioaerosols and particulate matter characteristics in indoor and outdoor air of veterinary clinics

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Veterinary staff are frequently exposed to various occupational hazards. The present study was aimed to investigate the air characteristics of veterinary clinics in terms of fungal bioaerosols and particulate matters. Air samples were taken every six days from the operating room, examination room and outdoor air of three veterinary clinics in Shiraz, southwest Iran. The concentrations of fungal bio-aerosols ranged from 8.05 CFU/m3 in the outdoor air of clinic B to 47.21 CFU/m3 in the operating room of clinic A. The predominant fungal genera identified in the studied clinics were Penicillium and Aspergillus niger, respectively. The concentrations of PM2.5 ranged from 41.88 μg/m3 in the operating room of clinic C to 60.31 μg/m3 in the outdoor air of the same clinic. The corresponding values for PM10 ranged from 114.40 μg/m3 in the operating room of clinic C to 256.70 μg/m3 in the outdoor air of the same clinic. The results of this study showed a positive correlation between the concentration of fungal bioaerosols and relative humidity (p < 0.05; r = 0.622). Besides, a negative correlation was found between the concentration of fungal bioaerosols and temperature (p < 0.05; r = 0.369). To better assess the individual exposure of veterinarians and staff in veterinary clinics, tests including nasopharyngeal sampling are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

The material and raw data are available upon request. All field data and content as well as software support the claims published in this article.

References

  1. Chen C-T, Liu B-H, Hsu C-H, Liu C-C, Liao AT, Chou C-H, et al. BIOAEROSOL investigation in three veterinary teaching hospitals in Taiwan. Taiwan Veterinary J. 2017;43(01):39–45.

    Article  CAS  Google Scholar 

  2. Samadi S, Wouters IM, Heederik DJ. A review of bio-aerosol exposures and associated health effects in veterinary practice. Annals of agricultural and environmental medicine. 2013;20(2).

  3. Hoseini M, Jabbari H, Naddafi K, Nabizadeh R, Rahbar M, Yunesian M, Jaafari J. Concentration and distribution characteristics of airborne fungi in indoor and outdoor air of Tehran subway stations. Aerobiologia. 2013;29(3):355–63.

    Article  Google Scholar 

  4. Faridi S, Naddafi K, Kashani H, Nabizadeh R, Alimohammadi M, Momeniha F, et al. Bioaerosol exposure and circulating biomarkers in a panel of elderly subjects and healthy young adults. Sci Total Environ. 2017;593:380–9.

    Article  Google Scholar 

  5. Mbareche H, Morawska L, Duchaine C. On the interpretation of bioaerosol exposure measurements and impacts on health. J Air Waste Manage Assoc. 2019;69(7):789–804.

    Article  Google Scholar 

  6. Jung JH, Lee JE, Lee CH, Kim SS, Lee BU. Treatment of fungal bioaerosols by a high-temperature, short-time process in a continuous-flow system. Appl Environ Microbiol. 2009;75(9):2742–9.

    Article  CAS  Google Scholar 

  7. Shelton BG, Kirkland KH, Flanders WD, Morris GK. Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl Environ Microbiol. 2002;68(4):1743–53.

    Article  CAS  Google Scholar 

  8. Cox CS, Wathes CM. Bioaerosols handbook: crc press; 1995.

  9. Samake A, Uzu G, Martins J, Calas A, Vince E, Parat S, et al. The unexpected role of bioaerosols in the oxidative potential of PM. Sci Rep. 2017;7(1):1–10.

    Article  CAS  Google Scholar 

  10. Losacco C, Perillo A. Particulate matter air pollution and respiratory impact on humans and animals. Environ Sci Pollut Res. 2018;25(34):33901–10.

    Article  Google Scholar 

  11. Borrego S, Molina A. Fungal assessment on storerooms indoor environment in the National Museum of fine arts, Cuba. Air Qual Atmos Health. 2019;12(11):1373–85.

    Article  CAS  Google Scholar 

  12. Ghosh B, Lal H, Kushwaha R, Hazarika N, Srivastava A, Jain V. Estimation of bioaerosol in indoor environment in the university library of Delhi. Sustain Environ Res. 2013;23:199–207.

    CAS  Google Scholar 

  13. Tabatabaei Z, Rafiee A, Abbasi A, Mehdizadeh A, Morovati R, Hoseini M. Investigation of fungal contamination in indoor air and on surfaces of traditional public baths in a historical city. J Environ Health Sci Eng. 2020;18(2):925–32.

    Article  Google Scholar 

  14. Canha N, Almeida SM, Do Carmo Freitas M, Wolterbeek HT. Assessment of bioaerosols in urban and rural primary schools using passive and active sampling methodologies. Arch Environ Protect 2015;41(4):11–22.

  15. Crawford JA, Rosenbaum PF, Anagnost SE, Hunt A, Abraham JL. Indicators of airborne fungal concentrations in urban homes: understanding the conditions that affect indoor fungal exposures. Sci Total Environ. 2015;517:113–24.

    Article  CAS  Google Scholar 

  16. Mohammadyan M, Keyvani S, Bahrami A, Yetilmezsoy K, Heibati B, Pollitt KJG. Assessment of indoor air pollution exposure in urban hospital microenvironments. Air Qual Atmos Health. 2019;12(2):151–9.

    Article  CAS  Google Scholar 

  17. Razali NYY, Latif MT, Dominick D, Mohamad N, Sulaiman FR, Srithawirat T. Concentration of particulate matter, CO and CO2 in selected schools in Malaysia. Build Environ. 2015;87:108–16.

    Article  Google Scholar 

  18. Ścibor M, Balcerzak B, Galbarczyk A, Targosz N, Jasienska G. Are we safe inside? Indoor air quality in relation to outdoor concentration of PM10 and PM2. 5 and to characteristics of homes. Sustain Ciies Soc. 2019;48:101537.

    Article  Google Scholar 

  19. Harper TA, Bridgewater S, Brown L, Pow-Brown P, Stewart-Johnson A, Adesiyun AA. Bioaerosol sampling for airborne bacteria in a small animal veterinary teaching hospital. Infect Ecol Epidemiol. 2013;3(1):20376.

    Google Scholar 

  20. Lutz EA, Hoet AE, Pennell M, Stevenson K, Buckley TJ. Nonoutbreak-related airborne Staphylococcus spp in a veterinary hospital. Am J Infect Control. 2013;41(7):648–51.

    Article  Google Scholar 

  21. Viegas C, Monteiro A, Ribeiro E, Aranha Caetano L, Carolino E, Assunção R, et al. Organic dust exposure in veterinary clinics: a case study of a small-animal practice in Portugal. Arhiv za higijenu rada i toksikologiju. 2018;69(4):309–15.

    Article  Google Scholar 

  22. Shahsavani S, Hoseini M, Dehghani M, Fararouei M. Characterisation and potential source identification of polycyclic aromatic hydrocarbons in atmospheric particles (PM10) from urban and suburban residential areas in Shiraz, Iran. Chemosphere. 2017;183:557–64.

    Article  CAS  Google Scholar 

  23. Kundu S, Pal AK. The evaluation of airborne respirable particulates in opencast mining area of Jharia coal field using Grimm 1.109 real-time portable aerosol spectrometer. J Biodivers Environ Sci. 2015;6(4):276–87.

    Google Scholar 

  24. Green CF, Scarpino PV, Gibbs SG. Assessment and modeling of indoor fungal and bacterial bioaerosol concentrations. Aerobiologia. 2003;19(3–4):159–69.

    Article  Google Scholar 

  25. Pitt J, Hocking A. Fungi and food spoilage. 1997. London, UK: Blackie Academic and Professional 1997;2.

  26. Carmichael J, Kendrick WB, Conners I, Sigler L. Genera of Hyphomycetes: Univ. Alberta Press.; 1980.

  27. Samson RA, Hoekstra ES, Frisvad JC. Introduction to food-and airborne fungi: Centraalbureau voor Schimmelcultures (CBS); 2004.

  28. Naddafi K, Jabbari H, Hoseini M, Nabizade R, Rahbar M, Yunesian M. Investigation of indoor and outdoor air bacterial density in Tehran subway system. 2011.

  29. Wu D, Zhang Y, Li A, Kong Q, Li Y, Geng S, Dong X, Liu Y, Chen P. Indoor airborne fungal levels in selected comprehensive compartments of the urban utility tunnel in Nanjing, Southeast China. Sustain Cities Soc. 2019;51:101723.

    Article  Google Scholar 

  30. Stockwell RE, Ballard EL, O'Rourke P, Knibbs LD, Morawska L, Bell SC. Indoor hospital air and the impact of ventilation on bioaerosols: a systematic review. J Hosp Infect. 2019;103(2):175–84.

    Article  CAS  Google Scholar 

  31. Grinn-Gofroń A. Airborne aspergillus and Penicillium in the atmosphere of Szczecin,(Poland)(2004–2009). Aerobiologia. 2011;27(1):67–76.

    Article  Google Scholar 

  32. Azimi F, Naddafi K, Nabizadeh R, Hassanvand MS, Alimohammadi M, Afhami S, Musavi SN. Fungal air quality in hospital rooms: a case study in Tehran, Iran. J Environ Health Sci Eng. 2013;11(1):30.

    Article  Google Scholar 

  33. Hoseinzadeh E, Samarghandie MR, Ghiasian SA, Alikhani MY, Roshanaie G. Evaluation of bioaerosols in five educational hospitals wards air in Hamedan, during 2011-2012. Jundishapur J Microbiol. 2013;6(6):1P.

    Article  Google Scholar 

  34. Mandal J, Brandl H. Bioaerosols in indoor environment-a review with special reference to residential and occupational locations. The Open Environmental & Biological Monitoring Journal. 2011;4(1).

  35. Rao CY, Burge HA, Chang JC. Review of quantitative standards and guidelines for fungi in indoor air. J Air Waste Manage Assoc. 1996;46(9):899–908.

    Article  CAS  Google Scholar 

  36. Shen H-D, Tam MF, Tang R-B, Chou H. Aspergillus and Penicillium allergens: focus on proteases. Curr Allergy Asthma Rep. 2007;7(5):351–6.

    Article  CAS  Google Scholar 

  37. Pitt J. The current role of Aspergillus and Penicillium in human and animal health. J Med Veterinary Mycol. 1994;32(sup1):17–32.

    Article  Google Scholar 

  38. Jo W-K, Seo Y-J. Indoor and outdoor bioaerosol levels at recreation facilities, elementary schools, and homes. Chemosphere. 2005;61(11):1570–9.

    Article  CAS  Google Scholar 

  39. Aydogdu H, Asan A, Otkun MT, Ture M. Monitoring of fungi and bacteria in the indoor air of primary schools in Edirne city. Turkey Indoor Built Environ. 2005;14(5):411–25.

    Article  CAS  Google Scholar 

  40. Stryjakowska-Sekulska M, Piotraszewska-Pajak A, Szyszka A, Nowicki M, Filipiak M. Microbiological quality of indoor air in university rooms. Pol J Environ Stud. 2007;16(4):623.

    Google Scholar 

  41. Zorman T, Jeršek B. Assessment of bioaerosol concentrations in different indoor environments. Indoor Built Environ. 2008;17(2):155–63.

    Article  Google Scholar 

  42. Gilbert Y, Veillette M, Duchaine C. Airborne bacteria and antibiotic resistance genes in hospital rooms. Aerobiologia. 2010;26(3):185–94.

    Article  Google Scholar 

  43. Kim KY, Kim YS, Kim D. Distribution characteristics of airborne bacteria and fungi in the general hospitals of Korea. Ind Health. 2010;48(2):236–43.

    Article  Google Scholar 

  44. Sharma D, Dutta B, Singh A. Exposure to indoor fungi in different working environments: a comparative study. Aerobiologia. 2010;26(4):327–37.

    Article  Google Scholar 

  45. Niesler A, Górny RL, Wlazło A, Łudzeń-Izbińska B, Ławniczek-Wałczyk A, Gołofit-Szymczak M, Meres Z, Kasznia-Kocot J, Harkawy A, Lis DO, Anczyk E. Microbial contamination of storerooms at the Auschwitz-Birkenau museum. Aerobiologia. 2010;26(2):125–33.

    Article  Google Scholar 

  46. Chen Y-P, Cui Y, Dong J-G. Variation of airborne bacteria and fungi at emperor Qin's Terra-cotta museum, Xi'an, China, during the “Oct. 1” gold week period of 2006. Environ Sci Pollut Res. 2010;17(2):478–85.

    Article  Google Scholar 

  47. Mentese S, Arisoy M, Rad AY, Güllü G. Bacteria and fungi levels in various indoor and outdoor environments in Ankara, Turkey. Clean–Soil, Air, Water. 2009;37(6):487–93.

    Article  CAS  Google Scholar 

  48. Bonetta S, Bonetta S, Mosso S, Sampò S, Carraro E. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system. Environ Monit Assess. 2010;161(1):473–83.

    Article  Google Scholar 

  49. Chao HJ, Schwartz J, Milton DK, Burge HA. Populations and determinants of airborne fungi in large office buildings. Environ Health Perspect. 2002;110(8):777–82.

    Article  Google Scholar 

  50. Bernasconi C, Rodolfi M, Picco A, Grisoli P, Dacarro C, Rembges D. Pyrogenic activity of air to characterize bioaerosol exposure in public buildings: a pilot study. Lett Appl Microbiol. 2010;50(6):571–7.

    Article  CAS  Google Scholar 

  51. Haas D, Habib J, Galler H, Buzina W, Schlacher R, Marth E, Reinthaler FF. Assessment of indoor air in Austrian apartments with and without visible mold growth. Atmos Environ. 2007;41(25):5192–201.

    Article  CAS  Google Scholar 

  52. Gόrny RL, Dutkiewicz J. Bacterial and fungal aerosols in indoor environment in central and eastern European countries. Ann Agric Environ Med. 2002;9:17–23.

    Google Scholar 

  53. Lee J-H, Jo W-K. Characteristics of indoor and outdoor bioaerosols at Korean high-rise apartment buildings. Environ Res. 2006;101(1):11–7.

    Article  CAS  Google Scholar 

  54. Araujo R, Cabral JP, Rodrigues AG. Air filtration systems and restrictive access conditions improve indoor air quality in clinical units: Penicillium as a general indicator of hospital indoor fungal levels. Am J Infect Control. 2008;36(2):129–34.

    Article  Google Scholar 

  55. Awad AHA. Air-borne particulate matter and its viable fraction during severe weather conditions in Cairo, Egypt. Trakya Universitesi Bilimsel Arastirmalar Dergisi. 2003;4(1):1–8.

    Google Scholar 

  56. Harrison RM, Deacon AR, Jones MR, Appleby RS. Sources and processes affecting concentrations of PM10 and PM2. 5 particulate matter in Birmingham (UK). Atmos Environ. 1997;31(24):4103–17.

    Article  CAS  Google Scholar 

  57. Wang J, Hu Z, Chen Y, Chen Z, Xu S. Contamination characteristics and possible sources of PM10 and PM2. 5 in different functional areas of Shanghai, China. Atmos Environ. 2013;68:221–9.

    Article  CAS  Google Scholar 

  58. Dehghani M, Kamali Y, Shamsedini N, Ghanbarian M. A study of the relationship between indoor/outdoor particleconcentration in Dena hospital in shiraz. J Health Res Commun. 2015;1(1):49–55.

    Google Scholar 

  59. Guo H, Morawska L, He C, Gilbert D. Impact of ventilation scenario on air exchange rates and on indoor particle number concentrations in an air-conditioned classroom. Atmos Environ. 2008;42(4):757–68.

    Article  CAS  Google Scholar 

  60. Slezakova K, da Conceição A-FM, do Carmo Pereira M. Elemental characterization of indoor breathable particles at a Portuguese urban hospital. J Toxic Environ Health A. 2012;75(13–15):909–19.

    Article  CAS  Google Scholar 

  61. Hong Y-J, Huang Y-C, Lee I-L, Chiang C-M, Lin C, Jeng HA. Assessment of volatile organic compounds and particulate matter in a dental clinic and health risks to clinic personnel. J Environ Sci Health A. 2015;50(12):1205–14.

    Article  CAS  Google Scholar 

  62. Rajasekar A, Balasubramanian R. Assessment of airborne bacteria and fungi in food courts. Build Environ. 2011;46(10):2081–7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staff at the laboratory of the Department of Environmental Health Engineering, Shiraz University of Medical Sciences (SUMS).

Funding

This research was supported and funded by Shiraz University of Medical Sciences as the project number 95–01–04-13548.

Author information

Authors and Affiliations

Authors

Contributions

Mosalaei Sh, wrote the first draft of the manuscript, Amiri H and Rafiee A, surveyed the studies for data extraction and did critical revision of the manuscript, Abbasi A and Norouzian Baghani A, performed the data-analysis, Mohammad Hoseini supervised this study. All authors have contributed considerably, and all authors are in agreement with respect to the manuscript content.

Corresponding author

Correspondence to Mohammad Hoseini.

Ethics declarations

Ethical approval

All authors acknowledge the objectivity and transparency of the content and ensure that professional conduct have been followed. The study did not involve human or animal participants.

Consent

All authors have approved the content of the article and expressed their consent to submit the article.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosalaei, S., Amiri, H., Rafiee, A. et al. Assessment of fungal bioaerosols and particulate matter characteristics in indoor and outdoor air of veterinary clinics. J Environ Health Sci Engineer 19, 1773–1780 (2021). https://doi.org/10.1007/s40201-021-00732-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00732-8

Keywords

Navigation