Skip to main content

Advertisement

Log in

Apatite and zircon fission-track thermochronology constraining the interplay between tectonics, topography and exhumation, Arunachal Himalaya

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Thirty-eight new apatite and zircon fission-track ages from 26 bedrock samples vary from 2.0 ± 0.3 to 12.1 ± 1.2 Ma, and 3.3 ± 0.3 and 13.2 ± 0.7 Ma, respectively, along three transects of the Kurung, Subansiri, and Siyom Rivers, which flow across the major structures of the Arunachal Himalaya. These cooling ages reveal marked variations in millennial-scale (>105 yr) exhumation rates from 0.6 to 3.0 mm/yr. A distinct positive correlation is visible between local topographic relief, hill slopes, channel steepness, and exhumation rates. The cooling ages are younger in the northern antiformal domains and older within the synformal nappe along the mountain front. Thermal modelling and time–temperature paths suggest that zones of rapid exhumation are controlled by structural windows within the Lesser Himalaya that were developed between 8 and 6 Ma over blind Main Himalayan Thrust (MHT). This time of rapid rock uplift and major topographic change led to a two-fold increase in the exhumation rates in the northern antiformal domains than the southern front of Arunachal Himalaya. Variation in cooling ages does not correlate with the present-day precipitation pattern. Tectonics appears to be the leading factor in driving the exhumation rates and landscape evolution in the Arunachal Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

accessed from SRTM 90 m digital elevation model. AFT (apatite fission-track) and ZFT (zircon fission-track). Light blue transparent rectangles, e.g., Zone A, Zone B, and Zone C, indicate the defined precipitation zones to analyze to cooling ages (see text). Red dots with error bars represent ZFT ages whereas blue dots with error bars represent AFT ages.

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

(modified from Yin et al. 2010; Adlakha et al. 2019). (a) The initial stage during Eocene to Early Miocene (~45−21 Ma) which the HHC/LHS were covered by the THS and thrusting along the STDS; (b) Early Miocene (~21−18 Ma and prior to 8 Ma) extrusion of the HHC along the MCT and the STDS, and the onset of LHS duplexes; (c) development/amplification of the LHS duplexes and formation of antiformal windows (~8–6 Ma); and (d) major phase of exhumation during Late Miocene to Present (6–0 Ma) of the HHC and the LH duplexes with accommodation of activity along with the STDS.

Similar content being viewed by others

References

  • Acharyya S K, Ghose S C, Ghose S N and Shah S C 1975 The continental Gondwana Group and associated marine sediments of Arunachal Pradesh (NEFA), Eastern Himalaya; Him. Geol. 5 60–82.

    Google Scholar 

  • Adams B A, Hodges K V, Whipple K X, Ehlers T A, van Soest M C and Wartho J 2015 Constraints on the tectonic and landscape evolution of the Bhutan Himalaya from thermochronometry; Tectonics 34 1329–1347.

    Article  Google Scholar 

  • Adams B A, Whipple K X, Hodges K V and Heimsath A M 2016 In-situ development of high-elevation, low relief landscapes via duplex deformation in the Eastern Himalayan hinterland, Bhutan; J. Geophys. Res. 121 294–319.

    Article  Google Scholar 

  • Adlakha V, Lang K A, Patel R C, Lal N and Huntington K W 2013a Rapid long-term erosion in the rain shadow of the Shillong Plateau, Eastern Himalaya; Tectonophys. 582 76–83.

    Article  Google Scholar 

  • Adlakha V, Patel R C, Lal N, Mehta Y P, Jain A K and Kumar A 2013b Tectonics and climate interplay: Exhumation patterns of the Dhauladhar Range, NW Himalaya; Curr. Sci. 104(11) 1551–1559.

    Google Scholar 

  • Adlakha V, Patel R C and Lal N 2013c Exhumation and its mechanisms: A review of exhumation studies in the Himalaya; J. Geol. Soc. 81 481–502.

    Google Scholar 

  • Adlakha V, Patel R C, Kumar A and Lal N 2019 Tectonic control over exhumation in the Arunachal Himalaya: New constraints from apatite fission track analysis; In: Crustal architecture and evolution of the Himalaya–Karakoram–Tibet Orogen (eds) Sharma R, Villa I M and Kumar S, Geol. Soc. Spec. Publ. 481 65–81, https://doi.org/10.1144/SP481.1.

  • Ahnert F 1970 Functional relationship between denudation, relief, and uplift in large mid-latitude drainage basins; Am. J. Sci. 268 243–263.

    Article  Google Scholar 

  • An Z, Kutzbach J E, Prell W and Porter S C 2001 Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times; Nature 411 62–66.

    Article  Google Scholar 

  • Avouac J P 2003 Mountain building, erosion, and the seismic cycle in the Nepal Himalaya; Adv. Geophys. 46 1–80.

    Article  Google Scholar 

  • Beaumont C, Jamieson R A, Nguyen M H and Lee B 2001 Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation; Nature 414 738–742.

    Article  Google Scholar 

  • Bollinger L, Avouac J P, Beyssac O, Catlos E J, Harrison T M, Grove M, Goffé B and Sapkota S 2004 Thermal structure and exhumation history of the Lesser Himalaya in central Nepal; Tectonics 23 TC5015.

    Article  Google Scholar 

  • Bollinger L, Henry P and Avouac J P 2006 Mountain building in the Nepal Himalaya: Thermal and kinematic model; Earth Planet. Sci. Lett. 244(1) 58–71.

    Article  Google Scholar 

  • Bookhagen B and Burbank D W 2010 Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge; J. Geophys. Res. 115 F03019.

    Google Scholar 

  • Bookhagen B, Thiede R C and Strecker M 2005a Abnormal monsoon years and their control on erosion and sediment flux in the high, arid northwest Himalaya; Earth Planet. Sci. Lett. 231 131–146.

    Article  Google Scholar 

  • Bookhagen B, Thiede R C and Strecker M 2005b Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya; Geology 33 149–152.

    Article  Google Scholar 

  • Boyer S E and Elliott D 1982 Thrust systems; Am. Assoc. Petrol. Geol. Bull. 66 1196–1230.

    Google Scholar 

  • Brandon M, Roden-tice M and Garver J 1998 Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State; Geol. Soc. Am. Bull. 110 985–1009.

    Article  Google Scholar 

  • Braun J 2002 Quantifying the effect of recent relief changes on age-elevation relationships; Earth Planet. Sci. Lett. 200 331–343.

    Article  Google Scholar 

  • Burbank D W, Blythe A E, Putkonen J K, Pratt-Sitaula B A, Gabet E J, Oskin M E, Barros A P and Ojha T P 2003 Decoupling of erosion and precipitation in the Himalaya; Nature 426 652–655.

    Article  Google Scholar 

  • Burg J P, Brunel M, Gapais D, Chen G M and Lr G C 1984 Deformation of leucogranites of the crystalline Main Central Thrust sheet in southern Tibet (China); J. Struct. Geol. 6 535–542.

    Article  Google Scholar 

  • Champagnac J D, Molnar P, Sue C and Herman F 2012 Tectonics, climate, and mountain topography; J. Geophys. Res. 117 B02403.

    Google Scholar 

  • Clarke G L, Bhowmik S K, Ireland T R, Aitchison J C, Chapman S L and Kent L 2016 Inverted Oligo-Miocene metamorphism in the Lesser Himalaya Sequence, Arunachal Pradesh, India: Age and grade relationships; J. Metamorph. Geol. 34 805–820.

    Article  Google Scholar 

  • Clift P D, Hodges K V, Heslop D, Hannigan R, Long H V and Calves G 2008 Correlation of Himalayan exhumation rates and Asian monsoon intensity; Nat. Geosci. 1 875–880.

    Article  Google Scholar 

  • Cooper F J, Adams B A, Edwards C S and Hodges K V 2012 Large normal-sense displacement on the South Tibetan fault system in the eastern Himalaya; Geology 40(11) 971–974.

    Article  Google Scholar 

  • Coutand I, Whipp D M Jr, Grujic D, Bernet M, Fellin M G, Bookhagen B, Landry K R, Ghalley S K and Duncan C 2014 Geometry and kinematics of the Main Himalayan Thrust and Neogene crustal exhumation in the Bhutanese Himalaya derived from the inversion of multithermochronologic data; J. Geophys. Res. 119(2) 1446–1481, https://doi.org/10.1002/2013jb010891.

    Article  Google Scholar 

  • Craddock W H, Burbank D W, Bookhagen B and Gabet E J 2007 Bedrock channel geometry along an orographic rainfall gradient in the upper Marsyandi River valley in central Nepal; J. Geophys. Res. 112 F03007.

    Google Scholar 

  • DeCelles P G, Robinson D M, Quade J, Ojha T P, Garzione C N, Copeland P and Upreti B N 2001 Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal; Tectonics 20(4) 487–509.

    Article  Google Scholar 

  • DeCelles P G, Carrapa B, Gehrels G E, Chakraborty T and Ghosh P 2016 Along-strike continuity of structure, stratigraphy, and kinematic history in the Himalayan thrust belt: The view from northeastern India; Tectonics 35(12) 2995–3027, https://doi.org/10.1002/2016tc004298.

    Article  Google Scholar 

  • Deeken A, Thiede R C, Sobel E R, Hourigan J K and Strecker M R 2011 Exhumational variability within the Himalaya of northwest India; Earth Planet. Sci. Lett. 305 103–114.

    Article  Google Scholar 

  • Dettman D L, Fang X, Garzione C N and Li J 2003 Uplift-driven climate change at 12 Ma: A long δ18O record from the NE margin of the Tibetan plateau; Earth Planet. Sci. Lett. 214 267–277.

    Article  Google Scholar 

  • Dettman D L, Kohn M J, Quade J, Ryerson F J, Ojha T P and Hamidullah S 2001 Seasonal stable isotope evidence for a strong Asian monsoon throughout the last 10.7 Ma; Geology 29 31–34.

    Article  Google Scholar 

  • DiBiase R A, Whipple K X, Heimsath A M and Ouimet W B 2010 Landscape form and millennial erosion rates in the San Gabriel Mountains, CA; Earth Planet. Sci. Lett. 289 134–144.

    Article  Google Scholar 

  • Donelick R A, O’Sullivan P B and Ketcham R A 2005 Apatite fission-track analysis; Rev. Mineral. Geochem. 58 49–94.

    Article  Google Scholar 

  • Ferrier K L, Huppert K L and Perron J T 2013 Climatic control of bedrock river incision; Nature 496 206–209.

    Article  Google Scholar 

  • Gabet E J, Burbank D W, Pratt-Sitaula B, Putkonen J and Bookhagen B 2008 Modern erosion rates in the high Himalayas of Nepal; Earth Planet. Sci. Lett. 267 482–494.

    Article  Google Scholar 

  • Galbraith R F 1981 On statistical models for fission track counts; Math. Geol. 13(6) 471–478.

    Article  Google Scholar 

  • Garzanti E, Baud A and Mascle G 1987 Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India); Geodinamica Acta 1 297–312.

    Article  Google Scholar 

  • Gavillot Y, Meigs A J, Sousa F J, Stockli D, Yule D and Malik M 2018 Late Cenozoic foreland-to-hinterland low-temperature exhumation history of the Kashmir Himalaya; Tectonics 37 3041–3068, https://doi.org/10.1029/2017TC004668.

    Article  Google Scholar 

  • Gleadow A J W 1981 Fission track dating methods – what are the alternatives; Nucl. Tracks 5 3–14.

    Article  Google Scholar 

  • Godard V, Bourlès D L, Spinabella F, Burbank D W, Bookhagen B, Fisher G B, Moulin A and Léanni L 2014 Dominance of tectonics over climate in Himalayan denudation; Geology 42 243–246.

    Article  Google Scholar 

  • Goswami T K, Baruah S, Mahanta B N, Kalita P and Bora P 2020 Thrust shear Sense and Shear Zone Fabrics in the Higher Himalaya, Siyom Valley, Eastern Arunachal Himalaya, India; J. Geol. Soc. India 96(5) 447–457.

    Article  Google Scholar 

  • Green P F 1981 A new look at statistics in the fission track dating; Nucl. Tracks 5 77–86.

    Article  Google Scholar 

  • Green P F, Duddy I R, Gleadow A J W, Tingate P R and Laslett G M 1985 Fission track annealing in apatite: Track length measurements and the form of Arrhenius plot; Nucl. Tracks 10 323–328.

    Google Scholar 

  • Grujic D, Coutand I, Bookhagen B, Bonnet S, Blythe A and Duncan C 2006 Climatic forcing of erosion, landscape, and tectonics in the Bhutan Himalayas; Geology 34 801–804.

    Article  Google Scholar 

  • Hajra S, Hazarika D, Kumar N, Pal S K and Roy P N S 2021 Seismotectonics and stress perspective of the Kumaon Himalaya: A geophysical evidence of a Lesser Himalayan duplex; Tectonophys. 806 228801, https://doi.org/10.1016/j.tecto.2021.228801.

    Article  Google Scholar 

  • Hauck M L, Nelson K D, Brown L D, Zhao W and Ross A R 1998 Crustal structure of the Himalayan orogen at approximately 90° east longitude from Project INDEPTH deep reflection profiles; Tectonics 17 481–500.

    Article  Google Scholar 

  • Hazarika D, Hajra S, Kundua A, Bankhwala M, Kumar N and Pant C C 2021 Seismology imaging the Moho and Main Himalayan Thrust beneath the Kumaon Himalaya: Constraints from receiver function analysis; Geophys. J. Int. 224 858–870.

    Article  Google Scholar 

  • Herman F, Copeland P, Avouac J P, Bollinger L, Mahéo G, LeFort P, Rai S, Foster D, Pêcher A, Stuwe K and Henry P 2010 Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermo-chronological and thermobarometric data and modelling of the topography; J. Geophys. Res. 115 B06407, https://doi.org/10.1029/2008JB006126.

    Article  Google Scholar 

  • Herren E 1987 Zanskar shear zone: Northeast–southwest extension within the Higher Himalayas (Ladakh, India); Geology 15(5) 409–413.

    Article  Google Scholar 

  • Hodges K, Wobus C, Ruhl K, Schildgen T and Whipple K 2004 Quaternary deformation, river steepening and heavy precipitation at the front of the Higher Himalayan ranges; Earth Planet. Sci. Lett. 220 379–389.

    Article  Google Scholar 

  • Hoth S, Adam J, Kukowshi N and Oncken O 2006 Influence of erosion on the kinematics of bivergent orogens: Results from scaled sandbox simulations; In: Tectonics, Climate, and Landscape Evolution (eds) Willett S D, Hovius N, Brandon M and Fisher D M, Geol. Soc. Am. Spec. Paper 398 201–225.

  • Huntington K W, Ehlers T A, Hodges K V and Whipp D M Jr 2007 Topography, exhumation pathway, age uncertainties, and the interpretation of thermochronometer data; Tectonics 26 TC4012.

    Article  Google Scholar 

  • Hurford A J 1985 On the closure temperature for fission tracks in zircon; Nucl. Tracks Radiat. Meas. 10 415.

    Article  Google Scholar 

  • Hurford A J 1990 Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the IUGS Subcommission on Geochronology; Chem. Geol. 80 171–178.

    Google Scholar 

  • Hurford A J and Green P F 1983 The zeta age calibration of fission-track dating; Isotope Geosci. 41 285–317.

    Google Scholar 

  • Iaffaldano G, Husson L and Bunge H P 2011 Monsoon speeds up Indian plate motion; Earth Planet. Sci. Lett. 304 503–510.

    Article  Google Scholar 

  • Jain A K 2017 Continental subduction in the NW-Himalaya and Trans-Himalaya; Italian J. Geosci. 136(1) 89–102, https://doi.org/10.3301/IJG.2015.43.

    Article  Google Scholar 

  • Jain A K, Banerjee D M and Kale V S 2020 Tectonics of the Indian Subcontinent; Springer 576p.

  • Jain A K, Kumar D, Singh S, Kumar A and Lal N 2000 Timing, quantification and tectonic modelling of Pliocene–Quaternary movements in the NW Himalaya: Evidences from fission-track dating; Earth Planet. Sci. Lett. 179 437–451.

    Article  Google Scholar 

  • Jain A K, Thakur V C and Tandon S K 1974 Stratigraphy and structure of the Siang District of Arunachal Pradesh; Him. Geol. 4 28–60.

    Google Scholar 

  • Konstantinovskaia E and Malavieille J 2005 Erosion and exhumation in accretionary orogens: Experimental and geological approaches; Geochem. Geophys. 6 Q02006.

    Google Scholar 

  • Koons P O 1990 Two-sided orogen; collision and erosion from the sandbox to the Southern Alps, New Zealand; Geology 18 679–682.

    Article  Google Scholar 

  • Kumar G 1997 Geology of Arunachal Pradesh; Geological Society of India Bangalore, 217p.

  • Landry K R, Coutand I, Whipp D M Jr, Grujic D and Hourigan J K 2016 Late Neogene tectonically driven crustal exhumation of the Sikkim Himalaya: Insights from inversion of multithermochronologic data; Tectonics 35 833–859.

    Article  Google Scholar 

  • Leech M L, Singh S, Jain A K, Klemperer S L and Manickavasagam R M 2005 The onset of India–Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya; Earth Planet. Sci. Lett. 234 83–97.

    Article  Google Scholar 

  • Malavieille J 2010 Impact of erosion, sedimentation, and structural heritage on the structure and kinematics of orogenic wedges, Analog models and case studies; GSA Today 20(1) 4–10.

    Article  Google Scholar 

  • Mancktelow N S and Grasemann B 1997 Time-dependent effects of heat advection and topography on cooling histories during erosion; Tectonophys. 270(3–4) 167–195.

    Article  Google Scholar 

  • McDermott J A, Hodges K V, Whipple K X, Van Soest M C and Hurtado J M Jr 2015 Evidence for Pleistocene low-angle normal faulting in the Annapurna–Dhaulagiri region; J. Geol. 123(2) 133–151.

    Article  Google Scholar 

  • McQuarrie N and Ehlers T A 2015 Influence of thrust belt geometry and shortening rate on thermochronometer cooling ages: Insight from the Bhutan Himalaya; Tectonics 34, https://doi.org/10.1002/2014TC003783.

    Article  Google Scholar 

  • McQuarrie N, Tobgay T, Long S P, Reiners P W and Cosca M A 2014 Variable exhumation rates and variable displacement rates: Documenting recent slowing of Himalayan shortening in western Bhutan; Earth Planet. Sci. Lett. 386 161–174.

    Article  Google Scholar 

  • Meigs A J, Burbank D W and Beck R A 1995 Middle-late Miocene (>10 Ma) formation of the Main Boundary Thrust in the Western Himalaya; Geology 23 423–426.

    Article  Google Scholar 

  • Molnar P, England P and Martinod J 1993 Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon; Rev. Geophys. 31 357–396.

    Article  Google Scholar 

  • Molnar P and Lyon-Caen H 1988 Some simple physical aspects of the support, structure, and evolution of mountain belts; In: Processes in continental lithospheric deformation (eds) Clark S P, Burchfiel, B C Jr. and Suppe J, Geol. Soc. Am. Spec. Paper 218 179–207.

  • Montgomery D R and Brandon M T 2002 Topographic controls on erosion rates in tectonically active mountain ranges; Earth Planet. Sci. Lett. 201 481–489.

    Article  Google Scholar 

  • Morell K D, Kirby E, Fisher D M and van Soest M 2012 Geomorphic and exhumational response of the Central American Volcanic Arc to Cocos Ridge subduction; J. Geophys. Res. 117 B04409.

    Google Scholar 

  • Morell K D, Sandiford M, Rajendran C P, Rajendran K, Alimanovic A, Fink D and Sanwal J 2015 Geomorphology reveals active décollement geometry in the central Himalayan seismic gap; Lithosphere 7 247–256.

    Article  Google Scholar 

  • Mudd S M, Attal M, Milodowski D T, Grieve S W D and Valters D A 2014 A statistical framework to quantify spatial variation in channel gradients using the integral method of channel profile analysis; J. Geophys. Res. Solid Earth 119(2) 138–152.

    Article  Google Scholar 

  • Mudd S M, Clubb F J, Gailleton B and Hurst M D 2018 How concave are river channels?; Earth Surf. Dyn. 6(2) 505–523.

    Article  Google Scholar 

  • Nabelek J, Hetenyi G, Vergne J, Sapkota S, Kafle B, Jiang M, Su H, Chen J, Huang B and The Hi-CLIMB Team 2009 Underplating in the Himalaya–Tibet collision zone revealed by the Hi-CLIMB experiment; Science 325 1371–1374

  • Naeser C W and Faul H 1969 Fission track annealing in apatite and sphene; J. Geophys. Res. 74 705–710.

    Article  Google Scholar 

  • Nandini P and Thakur S S 2011 Metamorphic evolution of the Lesser Himalayan Crystalline Sequence, Siyom Valley, NE Himalaya, India; J. Asian Earth Sci. 40 1089–1100.

    Article  Google Scholar 

  • Patel R C and Carter A 2009 Exhumation history of the Higher Himalayan Crystalline along Dhauliganga–Goriganga River valleys, NW India: New constraints from fission-track analysis; Tectonics 28 TC3004.

  • Patel R C and Manmohan 2020 Mio-Pliocene tectonics and exhumation histories of the NW- and NE-Himalaya; Episodes 43(1) 381–403, https://doi.org/10.18814/epiiugs/2020/020024.

    Article  Google Scholar 

  • Patel R C, Adlakha V, Lal N, Singh P and Kumar Y 2011 Spatiotemporal variation in exhumation of the crystallines in the NW Himalaya, India: Constraints from fission-track dating analysis; Tectonophys. 504 1–13.

    Article  Google Scholar 

  • Patel R C, Manmohan Karnwal R and Kumar R 2020 Tectonic control on exhumation and seismicity in the Garhwal–Kumaun Himalaya, NW-India; Terra Nova 32 23–33.

    Article  Google Scholar 

  • Patel R C, Singh S, Asokan A and Jain A K 1993 Extensional tectonics in the Himalayan orogen, Zanskar, NW India; In: Himalayan Tectonics (eds) Treloar P J and Searle M P, Geol. Soc. Spec. Publ. 74 445–459.

  • Patriat P and Achache J 1984 India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates; Nature 311 615–621.

    Article  Google Scholar 

  • Platt J P 1986 Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks; Geol. Soc. Am. Bull. 97 1037–1053.

    Article  Google Scholar 

  • Rahn M K and Grasemann B 1999 Fission Track and numerical thermal modelling of differential exhumation of the Glarus thrust plane (Switzerland); Earth Planet. Sci. Lett. 169 245–259.

    Article  Google Scholar 

  • Ray L, BhattAcharyya A and Roy S 2007 Thermal conductivity of Higher Himalayan Crystallines from Garhwal Himalaya, India; Tectonophys. 434 71–79.

    Article  Google Scholar 

  • Reiners P W and Brandon M T 2006 Using thermochronology to understand orogenic erosion; Ann. Rev. Earth Planet. Sci. 34 419–466.

    Article  Google Scholar 

  • Reiners P W, Ehlers T A, Mitchell S G and Montgomery D R 2003 Coupled spatial variation in precipitation and long-term erosion rates across the Washington Cascades; Nature 426 645–647.

    Article  Google Scholar 

  • Robert X, van der Beek P, Braun J, Perry C and Mugnier J L 2011 Control of detachment geometry on lateral variations in exhumation rates in the Himalaya: Insights from low-temperature thermochronology and numerical modelling; J. Geophys. Res. 116 B05202.

  • Robert X, van der Beek P, Braun J, Perry C, Dubille M and Mugnier J L 2009 Assessing Quaternary reactivation of the Main Central Thrust zone (central Nepal Himalaya): New thermochronologic data and numerical modelling; Geology 37(8) 731–734.

    Article  Google Scholar 

  • Roure F, Casero P and Vially R 1991 Growth processes and mélange formation in the southern Apennines accretionary wedge; Earth Planet. Sci. Lett. 102 395–412.

    Article  Google Scholar 

  • Rowley D B 1996 Age of initiation of collision between India and Asia: A review of stratigraphic data; Earth Planet. Sci. Lett. 145 1–13.

    Article  Google Scholar 

  • Salvi D, Mathew G and Kohn B 2017 Rapid exhumation of the upper Siang Valley, Arunachal Himalaya since the Pliocene; Geomorphology 284 238–249.

    Article  Google Scholar 

  • Salvi D, Mathew G, Kohn B, Pande K and Borgohain B 2020 Thermochronological insights into the morphotectonic evolution of Mishmi hills across the Dibang Valley, NE Himalayan Syntaxis; J. Asian Earth Sci. 190 104158.

    Article  Google Scholar 

  • Schulte-Pelkum V, Monsalve G, Sheehan A, Pandey M, Sapkota S, Bilham R and Wu F 2005 Imaging the Indian subcontinent beneath the Himalaya; Nature 435(7046) 1222–1225, https://doi.org/10.1038/nature03678.

    Article  Google Scholar 

  • Seeber L and Gornitz V 1983 River profiles along the Himalayan arc as indicators of active tectonics; Tectonophys. 92 335–467.

    Article  Google Scholar 

  • Sharma Y P, Lal N, Bal K D, Farshad R and Nagpaul K K 1980 Closing temperature of various fission track clocks; Contrib. Mineral. Petrol. 72 335–336.

    Article  Google Scholar 

  • Singh R K and Gururajan N S 2011 Microstructures in quartz and feldspar of the Bomdila gneiss from western Arunachal Himalaya. NE India: Implication for the geotectonic evolution of the Bomdila mylonitic zone; J. Asian Earth Sci. 42 1163–1178.

    Article  Google Scholar 

  • Singh S and Jain A K 2007 Geology and tectonics of the Subansiri Corridor, Arunachal Himalaya; DST–DST News Lett. 17 21–24.

    Google Scholar 

  • Singh S, Reddy K V S, Bindal C M and Ganesh B V 1997 Geology of the upper parts of the Subansiri Valley, Upper Subansiri District, Arunachal Pradesh; Rec. Geol. Surv. India 118 3–8.

    Google Scholar 

  • Snyder N P, Whipple K X, Tucker G E and Merritts D J 2000 Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California; Geol. Soc. Am. Bull. 112(8) 1250–1263.

    Article  Google Scholar 

  • Srivastava H B, Srivastava V, Srivastava R K and Singh C K 2011 Structural Analyses of the crystalline rocks between Dirang and Tawang, West Kameng District, Arunachal Himalaya; J. Geol. Soc. India 78 45–56.

    Article  Google Scholar 

  • Srivastava P, Patel S, Singh N, Jamir T, Kumar N, Manini A and Patel R C 2013 Early Oligocene paleosols of the Dagshai Formation, India: A record of the oldest tropical weathering in the Himalayan foreland; Sedim. Geol. 294 142–156.

    Article  Google Scholar 

  • Stockli D F 2005 Application of low-temperature thermochronometry to extensional tectonic settings; Rev. Mineral. Geochem. 58 411–448.

    Article  Google Scholar 

  • Stolar D, Roe G and Willett S D 2007 Controls on the patterns of topography and erosion rate in a critical orogen; J. Geophys. Res. Earth Surf. 112 F04002.

    Article  Google Scholar 

  • Stüwe K, White L and Brown R 1994 The influence of eroding topography on steady-state isotherms. Application to fission track analysis; Earth Planet. Sci. Lett. 124(1–4) 63–74.

    Article  Google Scholar 

  • Tagami T 2005 Zircon fission-track thermochronology and applications to fault studies; Rev. Mineral. Geochem. 58(1) 95–122.

    Article  Google Scholar 

  • Tagami T, Ito H and Nishimura S 1990 Thermal annealing characteristics of spontaneous fission tracks in zircon; Chem. Geol. Isotope Geosci. Sect. 80 159–169.

    Article  Google Scholar 

  • Thiede R C, Bookhagen B, Arrowsmith J R, Sobel E R and Strecker M R 2004 Climatic control on rapid exhumation along the Southern Himalayan front; Earth Planet. Sci. Lett. 222 791–806.

    Article  Google Scholar 

  • Thiede R, Ehlers T A, Bookhagen B and Strecker M R 2009 Erosional variability along the NW Himalaya; J. Geophys. Res. 114 F01015.

    Google Scholar 

  • Thiede R, Robert X, Stübner K, Dey S and Faruhn J 2017 Sustained out-of-sequence shortening along a tectonically active segment of the Main Boundary thrust: The Dhauladhar Range in the northwestern Himalaya; Lithosphere 9(5) 715–725.

    Article  Google Scholar 

  • Tobgay T, Mcquarrie N, Long S P, Kohn M J and Corrie S L 2012 The age and rate of displacement along the Main Central Thrust in the western Bhutan Himalaya; Earth Planet. Sci. Lett. 319–320 146–158.

    Article  Google Scholar 

  • Tremblay M M, Fox M, Schmidt J L, Tripathy L A, Wielicki M M, Harrison T M, Zeitler P K and Shuster D L 2015 Erosion in southern Tibet shut down at ∼10 Ma due to enhanced rock uplift within the Himalaya; Proc. Nat. Acad. Sci. USA 112(39) 12030–12035.

    Article  Google Scholar 

  • Tripathi C, Gaur R K, Tewari M, Shankar J and Dungrakoti B D 1982 On the geology of Sipi-Mara window, Arunachal Pradesh; Him. Geol. 10 366–373.

    Google Scholar 

  • Van der Beek P 2014 Exhumation (Thermochronology). Encyclopedia of Scientific Dating Methods; https://doi.org/10.1007/978-94-007-6326-5_249-1.

  • Wagner G A and Van den Haute P 1992 Fission-Track Dating; Kluwer Academic Publishers 285p.

  • Wang A, Min K, Wang G, Cao K, Shen T, Jiang P and Wei J 2019 Slow exhumation of the Greater Himalaya in the Yadong region, the transition between the Central and Eastern Himalaya, during the Late Neogene; J. Geol. Soc. 176 1207–1217.

    Article  Google Scholar 

  • Webb A A G, Yin A and Dubey C S 2013 U-Pb zircon geochronology of major lithologic units in the eastern Himalaya: Implications for the origin and assembly of Himalayan rocks; Geol. Soc. Am. Bull. 125(3/4) 499–522.

    Article  Google Scholar 

  • Whipp Jr D M, Ehlers T A, Blythe A E, Huntington K W, Hodges K V and Burbank D W 2007 Plio-Quaternary exhumation history of the central Nepalese Himalaya: Thermokinematic and thermochronometer age prediction model; Tectonics 26 TC3003.

  • Whipple K X 2009 The influence of climate on the tectonic evolution of mountain belts; Nat. Geosci. 2 97–104.

    Article  Google Scholar 

  • Willett S D 1999 Orogeny and orography: The effects of erosion on the structure of mountain belts; J. Geophys. Res. Solid Earth 104 28957–28981.

    Article  Google Scholar 

  • Willett S D, Beaumont C and Fullsack P 1993 Mechanical model for the tectonics of doubly vergent compressional orogens; Geology 21 371–374.

    Article  Google Scholar 

  • Wobus C, Whipple K X, Kirby E, Snyder N, Johnson J, Spyropolou K, Crosby B and Sheehan D 2006 Tectonics from topography: Procedures, promise, and pitfalls; Geol. Soc. Am. Spec. Paper 398 55–74.

    Google Scholar 

  • Yin A 2006 Cenozoic tectonic evolution of the Himalayan orogen as constrained by along strike variation of structural geometry, exhumation history, and foreland sedimentation; Earth-Sci. Rev. 76 1–131.

    Article  Google Scholar 

  • Yin A, Dubey C S, Kelty T K, Webb A A G, Harrison T M, Chou C Y and Célérier J 2010 Geologic correlation of the Himalayan orogen and Indian craton: Part 2. Structural geology, geochronology and tectonic evolution of the Eastern Himalaya; Geol. Soc. Am. Bull. 122(3/4) 360–395, https://doi.org/10.1130/B26461.1.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Department of Science and Technology, Government of India (DST-230-ESD and DST-380-ESD), and finalized during the research grants by the MoES [MoES/P.O.(Geo)101(g)/2016, dated 30.1.2020], Honorary Scientist Scheme of the Indian National Science Academy (INSA) to AKJ and CAP-Himalaya (Activity 7) of Wadia Institute of Himalayan Geology (WIHG) to VA. The authors thank Bodo Bookhagen for sharing the precipitation data. Pardeep Guri is thanked for the GIS guidance. The authors thank Kate Huntington, Dave Whipp for comments on the previous version of this manuscript, and two anonymous reviewers for comments on this manuscript, which improved the paper. Support received from the National Facility Lab on Low-Temperature Thermochronology, Kurukshetra University, Kurukshetra, during the preparation of the manuscript, is highly acknowledged. VA thanks the Director, WIHG, Dehradun, for constant encouragement, while SS, JP and RK appreciate the facilities at the Department of Earth Sciences, IIT Roorkee, Roorkee.

Author information

Authors and Affiliations

Authors

Contributions

AKJ and SS evolved the research study. JP, AKJ, SS and RK collected the data in field. JP generated the fission-track data. JP, VA, AKJ and RCP done the interpretation, drafted the figures and wrote the manuscript. NL contributed in data generation, interpretation and manuscript writing. RD contributed in the topographic analysis.

Corresponding author

Correspondence to Vikas Adlakha.

Additional information

Communicated by Rajneesh Bhutani

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pebam, J., Adlakha, V., Jain, A.K. et al. Apatite and zircon fission-track thermochronology constraining the interplay between tectonics, topography and exhumation, Arunachal Himalaya. J Earth Syst Sci 130, 178 (2021). https://doi.org/10.1007/s12040-021-01667-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01667-2

Keywords

Navigation