Skip to main content
Log in

Mixed siliciclastic–carbonate debrite–turbidite deposits in Paleoproterozoic Aravalli Supergroup, Zawar, Rajasthan, India: Implications on the Aravalli Basin evolution

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The Paleoproterozoic Aravalli Supergroup exposed in the Zawar Pb–Zn mineralized belt of Rajasthan, India contains a mixed siliciclastic–carbonate horizon (Mochia Formation), which hosts the mineralization. The mixed sediments are underlain by a siliciclastic turbidite unit (Mandli Formation) and overlain unconformably by a fluvio-deltaic- to storm-influenced siliciclastic platformal deposit (Bowa Formation). Detailed facies analysis of the mixed siliciclastic–carbonate succession reveals that the sediments were deposited in a slope-base to basin plane environment by sediment density flow processes. Petrography of the siliciclastic–carbonate sediments reveals that micritic carbonates dominate over siliciclastic components in the compositionally mixed layers. The preponderance of micritic carbonate over siliciclastics indicates the sediments were sourced by an adjacent platform during a sea-level highstand. The sedimentation pattern in the Zawar section of the Aravalli Basin was primarily controlled by the change in sea level under the influences of syn-sedimentary tectonics. The study further reveals the implication of the sedimentary succession of the Zawar section in the stratigraphy of the Aravalli Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Allen J R L 1982 Chapter 10. Structures and sequences related to gravity-current surges; In: Sedimentary Structures: Their Character and Physical Basis, Elsevier, Amsterdam, pp. 395–431.

  • Absar N and Sreenivas B 2015 Petrology and geochemistry of greywackes of the ~1.6 Ga Middle Aravalli Supergroup, northwest India: Evidence for active margin processes; Int. Geol. Rev. 57(2) 134–158.

    Article  Google Scholar 

  • Argnani A, Fontana D, Stefani C and Zuffa G G 2004 Late Cretaceous carbonate turbidites of the Northern Apennines: Shaking Adria at the onset of Alpine collision; J. Geol. 112(2) 251–259.

    Article  Google Scholar 

  • Banerjee D M 1971 Precambrian stromatolitic phosphorites of Udaipur, Rajasthan, India; Geol. Soc. Am. Bull. 82 2319–2330.

    Article  Google Scholar 

  • Banerjee D M and Bhattacharya P 1994 Petrology and geochemistry of greywackes from the Aravalli Supergroup Rajasthan, India and the tectonic evolution of a Proterozoic sedimentary basin; Precamb. Res. 67 11–35.

    Article  Google Scholar 

  • Basilici G and Vidal A C 2018 Alternating coarse-and fine-grained sedimentation in Precambrian deep-water ramp (Apiúna Formation, SE of Brazil): Tectonic and climate control or sea level variations?; Precamb. Res. 311 211–227.

    Article  Google Scholar 

  • Bhattacharya H N 2004 Analysis of the sedimentary succession hosting the Paleoproterozoic Zawar, zinc–lead sulphide ore deposit, Rajasthan, India; In: Sediment-hosted sulphide deposits (eds) Deb M and Goodfellow W D, Narosa Publishing House, New Delhi, pp. 350–361.

    Google Scholar 

  • Bhattacharya H N 2014a Tectonic control on sedimentation and related Pb–Zn sulphide mineralization in Aravalli Super Group, Rajasthan, India; Int. Assoc. Gond. Res. Conf. Series 18 151.

    Google Scholar 

  • Bhattacharya H N 2014b Outer marginal post-rift collapse along the north-western fringe of the Indian Shield – evolution of a Paleoproterozoic continental passive margin; 19th International Sedimentological Congress, Geneva, Switzerland, Abstract vol., p. 73.

  • Bhattacharya H N and Bhattacharya B 2005 Storm event beds in a Paleoproterozoic rift basin, Aravalli Supergroup, Rajasthan, India; Gondwana Res. 8(2) 231–239.

    Article  Google Scholar 

  • Bhattacharya H N and Bull S 2010 Tectono-sedimentary setting of the Paleoproterozoic Zawar Pb–Zn deposits, Rajasthan, India; Precamb. Res. 177(3–4) 323–338.

    Article  Google Scholar 

  • Bhattacharya H N and Mukherjee A 2020 A reappraisal of the Jharol Formation in the context of stratigraphy of Aravalli Supergroup, Rajasthan, India; J. Earth Syst. Sci. 129(1) 1–12.

    Article  Google Scholar 

  • Bouma A H 1962 Sedimentology of some flysch deposits. A graphic approach to facies interpretation; Elsevier, Amsterdam, 168p.

  • Chiarella D and Longhitano S G 2012 Distinguishing depositional environments in shallow-water mixed, bio-siliciclastic deposits on the basis of the degree of heterolithic segregation (Gelasian, southern Italy); J. Sedim. Res. 82(12) 969–990.

    Article  Google Scholar 

  • Chiarella D, Longhitano S G and Tropeano M 2017 Types of mixing and heterogeneities in siliciclastic–carbonate sediments; Mar. Pet. Geol. 88 617–627.

    Article  Google Scholar 

  • Chiarella D, Longhitano S G and Tropeano M 2019 Different stacking patterns along an active fold-and-thrust belt – Acerenza Bay, Southern Apennines (Italy); Geology 47(2) 139–142.

    Article  Google Scholar 

  • Colacicchi R and Baldanza A 1986 Carbonate turbidites in a Mesozoic pelagic basin: Scaglia Formation, Apennines – comparison with siliciclastic depositional models; Sedim. Geol. 48(1–2) 81–105.

    Article  Google Scholar 

  • Cumberpatch Z A, Soutter E A, Kane I A, Casson M and Vincent S J 2021 Evolution of a mixed siliciclastic–carbonate deep-marine system on an unstable margin: The Cretaceous of the Eastern Greater Caucasus, Azerbaijan; Basin Res. 33 612–647.

    Article  Google Scholar 

  • Deb M, Tiwary A and Palmer M R 1997 Tourmaline in Proterozoic massive sulfide deposits from Rajasthan, India; Mineral. Deposita 32 94–99.

    Article  Google Scholar 

  • Dorsey R J and Kidwell S M 1999 Mixed carbonate-siliciclastic sedimentation on a tectonically active margin: Example from the Pliocene of Baja California Sur, Mexico; Geology 27(10) 935–938.

    Article  Google Scholar 

  • Dunbar C O and Rodgers J 1957 Principles of stratigraphy; John Wiley & Sons, New York, 356p.

    Google Scholar 

  • Fonnesu M, Felletti F, Haughton P D, Patacci M and McCaffrey W D 2018 Hybrid event bed character and distribution linked to turbidite system sub-environments: The North Apennine Gottero Sandstone (north-west Italy); Sedimentology 65(1) 151–190.

    Article  Google Scholar 

  • Goodfellow W D, Lydon J W and Turner R J W 1993 Geology and genesis of stratiform sediment hosted (SEDEX) zinc–lead–silver sulphide deposits; Geol. Assoc. Canada Spec. Paper 40 201–252.

    Google Scholar 

  • Grotzinger J P and James N P 2000 Precambrian carbonates: Evolution and understanding; In: Carbonate sedimentation and diagenesis in the evolving Precambrian World; SEPM Spec. Publ. 67 3–20.

  • Haughton P, Davis C, McCaffrey W and Barker S 2009 Hybrid sediment gravity flow deposits – classification, origin and significance; Mar. Pet. Geol. 26(10) 1900–1918.

    Article  Google Scholar 

  • Johns D R, Mutti E, Rosell J and Seguret M 1981 Origin of a thick, redeposited carbonate bed in Eocene turbidites of the Hecho Group, south-central Pyrenees, Spain; Geology 9(4) 161–164.

    Article  Google Scholar 

  • Johnson A M 1970 Physical Processes in Geology; Freeman Cooper San Francisco, 577p.

  • Large R, Bull S W, Cooke D R and McGoldrick P J 1998 A genetic model for the HYC deposit, Australia: Based on regional sedimentology, geochemistry and sulphide-sediment relationships; Econ. Geol. 93 1345–1569.

    Article  Google Scholar 

  • Lien T, Walker R G and Martinsen O J 2003 Turbidites in the Upper Carboniferous Ross Formation, western Ireland: Reconstruction of a channel and spillover system; Sedimentology 50(1) 113–148.

    Article  Google Scholar 

  • Longhitano S G, Chiarella D and Muto F 2014 Three-dimensional to two-dimensional cross-strata transition in the lower Pleistocene Catanzaro tidal strait transgressive succession (southern Italy); Sedimentology 61 2136–2171.

    Article  Google Scholar 

  • Lowe D R 1982 Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents; J. Sedim. Res. 52(1) 279–297.

    Google Scholar 

  • Lowe D R 1988 Suspended-load fallout rate as an independent variable in the analysis of current structures; Sedimentology 35 765–776.

    Article  Google Scholar 

  • Martins-Neto M A 2000 Tectonics and sedimentation in a Paleo/Mesoproterozoic rift-sag basin (Espinhaco basin, southern Brazil); Precamb. Res. 103 147–173.

    Article  Google Scholar 

  • McKenzie N R, Hughes N C, Myrow P M, Banerjee D M, Deb M and Planavsky N J 2013 New age constraints for the Proterozoic Aravalli–Delhi successions of India and their implications; Preamb. Res. 238 120–128.

    Article  Google Scholar 

  • Medig K P R, Turner E C, Thorkelson D J and Rainbird R H 2016 Rifting of Columbia to form a deep-water siliciclastic to carbonate succession: The Mesoproterozoic Pinguicula Group of northern Yukon, Canada; Preamb. Res. 278 179–206.

    Article  Google Scholar 

  • Meissnar F F 1972 Cyclic sedimentation in Middle Permian strata of the Permian Basin, west Texas and New Mexico; In: Cyclic sedimentation in the Permian Basin, 2nd edn, Midland, Texas; West Texas Geol. Soc., pp. 203–232.

  • Middleton G V 1969 Grain flows and other mass movements down slopes; In: The new concepts of continental margin sedimentation (ed.) Stanley D J, American Geol. Inst short course lecture note GM-B-1 to GM-B-14.

    Article  Google Scholar 

  • Middleton G V and Hampton M A 1973 Sediment gravity flows: Mechanics of flow and deposition; In: Turbidites and deep-water sedimentation (eds) Middleton G V and Bouma A H, SEPM Pacific Section, Short Course Anaheim 1–38 Pacific Section SEPM, Los Angeles.

  • Mishra S R, Sharma A, Chakraborty P P, Mohanty S P and Tripathi S C 2020 Mixed carbonate–siliciclastic sedimentation in the Upper Cretaceous Nilkanth Formation, Garhwal Himalaya; J. Earth Syst. Sci. 129 1–14.

    Article  Google Scholar 

  • Mookherjee A 1964 Geology of the Zawar Lead–Zinc Mine, Rajasthan, India; Econ. Geol. 59 656–677.

    Article  Google Scholar 

  • Mookherjee A 1965 Regional structural framework of the lead zinc deposit of Zawar, Rajasthan, India; J. Geol. Soc. India 6 67–79.

    Google Scholar 

  • Mount J 1985 Mixed siliciclastic and carbonate sediments: A proposed first-order textural and compositional classification; Sedimentology 32(3) 435–442.

    Article  Google Scholar 

  • Moscardelli L, Ochoa J, Lunt I and Zahm L 2019 Mixed siliciclastic–carbonate systems and their impact for the development of deep-water turbidites in continental margins: A case study from the Late Jurassic to Early Cretaceous Shelburne subbasin in offshore Nova Scotia; AAPG Bull. 103(10) 2487–2520.

    Article  Google Scholar 

  • Mulder T and Alexander A 2001 The physical character of subaqueous sedimentary density flows and their deposits; Sedimentology 48 269–299.

    Article  Google Scholar 

  • Mullins H T 1983 Modern carbonate slopes and basins of the Bahamas; Soc. Eco. Paleontol. Mineral., Short Course Notes.

  • Mullins H T and Cook H E 1986 Carbonate apron models: Alternatives to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration; Sedim. Geol. 48(1–2) 37–79.

    Article  Google Scholar 

  • Mullins H T, Heath K C, Van Buren H M and Newton C R 1984 Anatomy of modern open-sea carbonate slope: Northern Little Bahama Bank; Sedimentology 31 141–168.

  • Mutti E 1992 Turbidite sandstones; Agip, Istituto di Geologia, Università di Parma, 275p.

    Google Scholar 

  • Mutti E, Bernoulli D, Lucchi F R and Tinterri R 2009 Turbidites and turbidity currents from Alpine ‘flysch’ to the exploration of continental margins; Sedimentology 56(1) 267–318.

    Article  Google Scholar 

  • Mutti E and Ricci Lucchi F 1978 Turbidites of the northern Apennines: Introduction to facies analysis; Int. Geol. Rev. 20(2) 125–166.

    Article  Google Scholar 

  • Nemec W 1990 Aspects of sediment movement on steep delta slopes; In: Coarse-Grained Deltas (eds) Colella A and Prior D B, Int. Assoc. Sedim., Spec. Publ. 10 29–73.

  • Normark W R 1970 Growth patterns of deep-sea fans; AAPG Bull. 54(11) 2170–2195.

    Google Scholar 

  • Paull C K, Ussler W, Holbrook W S, Hill T M, Haflidarson H, Winters W, Lorenson T, Aiello I, Johnson J E and Lundsten E 2010 The tail of the Storegga Slide: Insights from the geochemistry and sedimentology of the Norwegian Basin deposits; Sedimentology 57 1409–1429.

    Article  Google Scholar 

  • Pettijohn F J 1975 Sedimentary Rocks; Harper and Brothers, New York, 628p.

    Google Scholar 

  • Pettijohn F J, Potter P E and Siever R 1987 Sand and sandstone; 2nd edn, Springer-Verlag, New York, 553p.

    Book  Google Scholar 

  • Plimer I R 1988 Tourmalinites associated with Australian Proterozoic submarine exhalative ores; In: Base metal sulfide deposits in sedimentary and volcanic environments; Springer, Berlin, Heidelberg, pp. 255–283.

  • Poddar B C and Mathur R K 1965 A note on the repetitious sequence of greywacke–slate–phyllite in the Aravalli System around Udaipur, Rajasthan; Bull. Geol. Soc. India 2(2) 192–194.

    Google Scholar 

  • Postma G 1986 Classification for sediment gravity-flow deposits based on flow conditions during sedimentation; Geology 14(4) 291–294.

    Article  Google Scholar 

  • Roy A B and Paliwal B S 1981 Evolution of lower Proterozoic epicontinental sediments: Stromatolite bearing Aravalli rocks of Udaipur, Rajasthan, India; Precamb. Res. 14 49–74.

    Article  Google Scholar 

  • Roy A B 1988 Stratigraphic and tectonic framework of the Aravalli Mountain Range; In: Precambrian of Aravalli Mountain, Rajasthan, India (ed.) Roy A B, Geol. Soc. India Memoir 7 3–31.

  • Roy A B 1995 Geometry and evolution of superposed folding in Zawar lead-zinc mineralized belt, Rajasthan; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 104 349–371.

  • Roy A B and Jakhar S R 2002 Geology of Rajasthan (Northwest India) Precambrian to recent; Scientific Publishers, Jodhpur, India, 421p.

    Google Scholar 

  • Schieber J, Southard J B, Kissling P, Rossman B and Ginsburg R 2013 Experimental deposition of carbonate mud from moving suspensions: Importance of flocculation and implications for modern and ancient carbonate mud deposition; J. Sedim. Res. 83(11) 1026–1032.

    Article  Google Scholar 

  • Shanmugam G, Moiola R J and Damuth J E 1985 Eustatic control of submarine fan development; In: Submarine fans and related turbidite systems (eds) Bouma A H, Normark W R and Barnes N E, Springer Verlag, New York, pp. 23–28.

    Chapter  Google Scholar 

  • Sibley D F and Gregg J M 1987 Classification of dolomite rock textures; J. Sedim. Res. 57(6) 967–975.

    Google Scholar 

  • Sinha-Roy S, Mohanty M and Guha D B 1993 Banas dislocation zone in Nathdwara-Khamnor area, Udaipur district, Rajasthan and its significance on basement-cover relations in the Aravalli fold belt; Curr. Sci. 65(1) 68–72.

    Google Scholar 

  • Sinha-Roy S 2004 Precambrian terranes of Rajasthan, India and their linkage with plate tectonics-controlled mineralization type and metallogeny; In: Sediment-hosted Sulphide Deposits (eds) Deb M, Goodfellow W D; Narosa Publishing House, New Delhi, pp. 222–245.

    Google Scholar 

  • Stow D A V and Bowen A J 1978 Origin of lamination in deep sea, fine-grained sediments; Nature 274 324–328.

    Article  Google Scholar 

  • Straczek J A and Srikantan B 1966 The geology of the Zawar Lead–Zinc Area, Rajasthan, India; Geol. Surv. India Memoir 92 85.

    Google Scholar 

  • Sumner E J, Amy L and Talling P J 2008 Deposit structure and processes of sand deposition from a decelerating sediment suspension; J. Sedim. Res. 78 529–547.

    Article  Google Scholar 

  • Surlyk F and Ineson J R 1992 Carbonate gravity flow deposition along a platform margin scarp (Silurian, North Greenland); J. Sedim. Res. 62(3) 400–410.

    Google Scholar 

  • Swart R 1992 Facies analysis of late Proterozoic carbonate turbidites in the Zerrissene Basin, Damara Orogen, Namibia; J. Africa Earth Sci. 14(2) 283–294.

    Article  Google Scholar 

  • Sylvester Z and Lowe D R 2004 Textural trends in turbidites and slurry beds from the Oligocene flysch of the Carpathians, Romania; Sedimentology 51 945–972.

    Article  Google Scholar 

  • Talluri J K, Pandalai H S and Jadhav G N 2000 Fluid chemistry and depositional mechanism of the epigenetic, discordant ores of the Proterozoic, carbonate-hosted, Zawarmala Pb–Zn deposit, Udaipur District, India; Econ. Geol. 95(7) 1505–1525.

    Article  Google Scholar 

  • Talling P J, Masson D G, Sumner E J and Malgesini G 2012 Subaqueous sediment density flows: Depositional processes and deposit types; Sedimentology 59(7) 1937–2003.

    Article  Google Scholar 

  • Tucker M E 1991 Sequence stratigraphy of carbonate evaporate basins: The Upper Permian (Zechstein) of northeast England and adjoining North Sea; J. Geol. Soc. London 148 1019–1036.

    Article  Google Scholar 

  • Walker R G 1965 The origin and significance of the internal sedimentary structures of turbidites; Yorkshire Geol. Soc. Proc. 35 1–32.

    Article  Google Scholar 

  • Walker R G 1978 Deep-water sandstone facies and ancient submarine fans – models for exploration for stratigraphic traps; AAPG Bull. 62 932–966.

  • Wang W, Cawood P A, Pandit M K, Zhou M F and Zhao J H 2019 Evolving passive- and active-margin tectonics of the Paleoproterozoic Aravalli Basin, NW India; GSA Bull. 131(3–4) 426–443.

    Article  Google Scholar 

  • Yose L A and Heller P L 1989 Sea-level control of mixed-carbonate-siliciclastic, gravity-flow deposition: Lower part of Keeler Canyon Formation (Pennsylvanian), southern California; Geol. Soc. Am. Bull. 101 427–439.

    Article  Google Scholar 

  • Zuffa G G 1980 Hybrid arenites: Their composition and classifications; J. Sedim. Petrol. 50 21–29.

    Google Scholar 

Download references

Acknowledgements

Amrita Mukherjee gratefully acknowledges the Department of Science and Technology, Govt. of India, New Delhi, for financial assistance in the form of Women Scientist Project (No. SR/WOS-A/EA-9/2017). The authors are grateful to Dr Domenico Chiarella, Department of Earth Sciences, Royal Holloway, University of London, UK, for his comments and suggestions for improvement on an early version of the manuscript. The authors are also grateful to two anonymous reviewers for their constructive suggestions. The authors are thankful to Techno India University, West Bengal for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Contributions

Amrita Mukherjee: Field investigation, visualization, simulation of data, laboratory investigation, compilation of data, data interpretation, drafting of the manuscript, reviewing, modelling, preparation of the figures and map. H N Bhattacharya: Field investigation, visualization, conceptualization, data interpretation, modelling, reviewing and editing the manuscript and figures.

Corresponding author

Correspondence to H N Bhattacharya.

Additional information

Communicated by Santanu Banerjee

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Bhattacharya, H.N. Mixed siliciclastic–carbonate debrite–turbidite deposits in Paleoproterozoic Aravalli Supergroup, Zawar, Rajasthan, India: Implications on the Aravalli Basin evolution. J Earth Syst Sci 130, 177 (2021). https://doi.org/10.1007/s12040-021-01681-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01681-4

Keywords

Navigation