Skip to main content

Advertisement

Log in

Spatial patterns of magnetic susceptibility optimized by anisotropic correction in different Alisols in southern Amazonas, Brazil

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Changes in primary cover for agricultural crops in Amazonas region influence the phenomenon of spatial variability in soil properties. This phenomenon is still studied assuming that the spatial data is isotropic, but does not consider the anisotropic pattern of soil properties. Thus, the aim of this work was to characterize, identify and correct isotropic patterns of magnetic susceptibility (MS) measurements using anisotropic models that actually represent the spatial aspects of the data. Three cultivation areas and one under native forest, classified as Haplic Alisol, were georeferenced and sampled by a mesh system covering 192 samples per area. Texture, X-ray diffraction and frequency-dependent (χfd) and mass-specific (χlf and χhf) magnetic susceptibility analyzes were performed. Then, classical and geostatistical analyzes were applied to the data, assuming isotropy and anisotropy. All χ frequencies were shown to be spatially dependent, satisfying the isotropy hypothesis. Thereby, the application of anisotropic analysis was able to confirm the presence of all types of anisotropy in Alisols. Anisotropic correction provided an improvement in models that fit the directional trends within the areas, and provided a reduction in the nugget effect and an increase in the correlation ranges. Thus, the generated kriging maps improved the patches of zonal trends of greater or lesser χ that stand out at the level of sub-regions. These zones should, therefore, be used as indicators of variability, paying special attention during their management, especially in research related to the delimitation of specific management zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Barbosa, D. P., Bottega, E. L., Valente, D. S. M., Santos, N. T., Guimarães, W. D., & Ferreira, M. D. P. (2019). Influence geometric anisotropy in management zones delineation. Revista Ciência Agronômica. https://doi.org/10.5935/1806-6690.20190064

    Article  Google Scholar 

  • Boisvert, J. B., Manchuk, J. G., & Deutsch, C. V. (2009). Kriging in the presence of locally varying anisotropy using non-Euclidean distances. Mathematical Geosciences. https://doi.org/10.1007/s11004-009-9229-1

    Article  Google Scholar 

  • Brevik, E. C., Calzolari, C., Miller, B. A., Pereira, P., Kabala, C., Baumgarten, A., & Jordán, A. (2016). Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma. https://doi.org/10.1016/j.geoderma.2015.05.017

    Article  Google Scholar 

  • Cervi, E. C., Costa, A. C. S., & Souza Junior, I. G. (2014). Magnetic susceptibility and the spatial variability of heavy metals in soils developed on basalt. Journal of Applied Geophysics. https://doi.org/10.1016/j.jappgeo.2014.10.024

    Article  Google Scholar 

  • Chorti, A., & Hristopulos, D. T. (2008). Nonparametric identification of anisotropic (elliptic) correlations in spatially distributed data sets. IEEE Transactions on Signal Processing. https://doi.org/10.1109/tsp.2008.924144

    Article  Google Scholar 

  • Costa, A. C. S., & Bigham, J. M. (2009). Óxidos de ferro. In V. F. Mello, & L. R. F. Alleoni (Eds.), Química e Mineralogia do Solo, Parte 1 – Conceitos Básicos (pp. 695–572). Sociedade Brasileira de Ciência do Solo.

  • Crawford, C. A. G., & Hergert, G. W. (1997). Incorporating spatial trends and anisotropy in geostatistical mapping of soil properties. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj1997.03615995006100010043x

    Article  Google Scholar 

  • Dankoub, Z., Ayoubi, S., Khademi, H., & Lu, S. G. (2012). Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use in the Isfahan region, Central Iran. Pedosphere. https://doi.org/10.1016/s1002-0160(11)60189-6

    Article  Google Scholar 

  • Dearing, J. A. (1999). Environmental magnetic susceptibility: Using the Bartington MS2 system (2nd ed.). Chi Publishing.

    Google Scholar 

  • Deutsch, C. V., & Journel, A. G. (1997). GSLIB geostatistical software library and user’s guide (2nd ed.). Oxford University Press.

    Google Scholar 

  • Ding, Z., Zhang, Z., Li, Y., Zhang, L., & Zhang, K. (2020). Characteristics of magnetic susceptibility on cropland and pastureland slopes in an area influenced by both wind and water erosion and implications for soil redistribution patterns. Soil and Tillage Research. https://doi.org/10.1016/j.still.2019.104568

    Article  Google Scholar 

  • Ecker, M. D., & Gelfand, A. E. (2003). Spatial modeling and prediction under stationary non-geometric range anisotropy. Environmental and Ecological Statistics. https://doi.org/10.1023/A:1023600123559

    Article  Google Scholar 

  • Facas, N. W., Mooney, M. A., & Furrer, R. (2010). Anisotropy in the spatial distribution of roller-measured soil stiffness. International Journal of Geomechanics. https://doi.org/10.1061/(asce)gm.1943-5622.0000053

    Article  Google Scholar 

  • Golden Software, LLC. 809 14th Street, Golden, Colorado 80401, U.S.A.

  • Golden, N., Morrison, L., Gibson, P. J., Potito, A. P., & Zhang, C. (2015). Spatial patterns of metal contamination and magnetic susceptibility of soils at an urban bonfire site. Applied Geochemistry. https://doi.org/10.1016/j.apgeochem.2014.11.004

    Article  Google Scholar 

  • Guedes, L. P. C., Uribe-Opazo, M. A., & Ribeiro Junior, P. J. (2013). Influence of incorporating geometric anisotropy on the construction of thematic maps of simulated data and chemical attributes of soil. Chilean Journal of Agricultural Research. https://doi.org/10.4067/s0718-58392013000400013

    Article  Google Scholar 

  • Guedes, L. P. C., Uribe-Opazo, M. A., Johann, J. A., & Souza, E. G. (2008). Anisotropia no estudo da variabilidade espacial de algumas variáveis químicas do solo. Revista Brasileira De Ciência Do Solo. https://doi.org/10.1590/s0100-06832008000600001

    Article  Google Scholar 

  • Guedes, L. P., Uribe-Opazo, M. A., Ribeiro Junior, P. J., & Dalposso, G. H. (2018). Relationship between sample design and geometric anisotropy in the preparation of thematic maps of chemical soil attributes. Engenharia Agrícola. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n2p260-269/2018

    Article  Google Scholar 

  • Hartemink, A. E., Veldkamp, T., & Bai, Z. (2008). Land cover change and soil fertility decline in tropical regions. Turkish Journal of Agriculture and Forestry, 32(3), 195–213.

    CAS  Google Scholar 

  • IBM Corp. Released. (2017). IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. Oxford University Press.

    Google Scholar 

  • Jordanova, D., Jordanova, N., & Petrov, P. (2014). Pattern of cumulative soil erosion and redistribution pinpointed through magnetic signature of Chernozem soils. CATENA. https://doi.org/10.1016/j.catena.2014.03.020

    Article  Google Scholar 

  • Jordanova, N. (2016). Soil magnetism: Applications in pedology, environmental science and agriculture (1st Edition). Academic Press (Elsevier).

  • Kämpf, N., & Schwertmann, U. (1982). The 5-M-NaOH concentration treatment for iron oxides in soils. Clays and Clay Minerals. https://doi.org/10.1346/ccmn.1982.0300601

    Article  Google Scholar 

  • Kanevski, M., & Maignan, M. (2004). Analysis and modelling of spatial environmental data. EPFL Press.

    Google Scholar 

  • Ketterings, Q. M., Bigham, J. M., & Laperche, V. (2000). Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj2000.6431108x

    Article  Google Scholar 

  • Le Borgne, E. (1960). The influence of fire on the magnetic properties of soil overlying schist and granite. Annales Geophysicae.

  • Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software. https://doi.org/10.1016/j.envsoft.2013.12.008

    Article  Google Scholar 

  • Liu, L., Zhang, K., Zhang, Z., & Qiu, Q. (2015). Identifying soil redistribution patterns by magnetic susceptibility on the black soil farmland in Northeast China. CATENA. https://doi.org/10.1016/j.catena.2015.03.003

    Article  Google Scholar 

  • Liu, L., Zhang, Z., Zhang, K., Liu, H., & Fu, S. (2018). Magnetic susceptibility characteristics of surface soils in the Xilingele grassland and their implication for soil redistribution in wind-dominated landscapes: A preliminary study. CATENA. https://doi.org/10.1016/j.catena.2017.12.009

    Article  Google Scholar 

  • Liu, Q., Roberts, A. P., Larrasoana, J. C., Banerjee, S. K., Guyodo, Y., Tauxe, L., & Oldfield, F. (2012). Environmental magnetism: Principles and applications. Reviews of Geophysics. https://doi.org/10.1029/2012RG000393

    Article  Google Scholar 

  • Maeda, E. E., Formaggio, A. R., & Shimabukuro, Y. E. (2008). Impacts of land use and land cover changes on sediment yield in a Brazilian Amazon drainage basin. Giscience & Remote Sensing. https://doi.org/10.2747/1548-1603.45.4.443

    Article  Google Scholar 

  • Marques, J., Jr., Siqueira, D. S., Camargo, L. A., Teixeira, D. D. B., Barrón, V., & Torrent, J. (2014). Magnetic susceptibility and diffuse reflectance spectroscopy to characterize the spatial variability of soil properties in a Brazilian Haplustalf. Geoderma. https://doi.org/10.1016/j.geoderma.2013.12.007

    Article  Google Scholar 

  • Matheron, G. (1963). Principles of geostatistics. Economic Geology. https://doi.org/10.2113/gsecongeo.58.8.1246

    Article  Google Scholar 

  • Matheron, G. (1965). Les variables régionalisées et leur estimation: une application de la théorie des fonctions aléatoires aux sciences de la nature. Masson et CIE.

  • Maxbauer, D. P., Feinberg, J. M., Fox, D. L., & Nater, E. A. (2017). Response of pedogenic magnetite to changing vegetation in soils developed under uniform climate, topography, and parent material. Scientific Reports. https://doi.org/10.1038/s41598-017-17722-2

    Article  PubMed  PubMed Central  Google Scholar 

  • McKeague, J., & Day, J. (1966). Dithionite-and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science. https://doi.org/10.4141/cjss66-003

    Article  Google Scholar 

  • Mehra, O. P., & Jackson, M. L. (1958). Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Clays and Clay Minerals. https://doi.org/10.1346/ccmn.1958.0070122

    Article  Google Scholar 

  • Minasny, B., & McBratney, A. B. (2016). Digital soil mapping: A brief history and some lessons. Geoderma. https://doi.org/10.1016/j.geoderma.2015.07.017

    Article  Google Scholar 

  • Montanari, R., Souza, G. S. A., Pereira, G. T., Marques, J., Siqueira, D. S., & Siqueira, G. M. (2012). The use of scaled semivariograms to plan soil sampling in sugarcane fields. Precision Agriculture. https://doi.org/10.1007/s11119-012-9265-6

    Article  Google Scholar 

  • Mucha, J., & Wasilewska-Błaszczyk, M. (2012). Variability anisotropy of mineral deposits parameters and its impact on resources estimation—A geostatistical approach. Gospodarka Surowcami Mineralnymi. https://doi.org/10.2478/v10269-012-0037-8

    Article  Google Scholar 

  • Nascimento, C. W. A., Lima, L. H. V., Silva, F. L., Biondi, C. M., & Campos, M. C. C. (2018). Natural concentrations and reference values of heavy metals in sedimentary soils in the Brazilian Amazon. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-018-6989-4

    Article  PubMed  Google Scholar 

  • Neary, D. G., Ryan, K. C., & DeBano, L. F. (2005, revised 2008). Wildland fire in ecosystems: Effects of fire on soils and water. Gen. Tech. Rep. RMRS-GTR-42-vol.4. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. https://doi.org/10.2737/rmrs-gtr-42-v4

  • Oliveira, I. A., Marques Junior, J., Campos, M. C. C., Aquino, R. E., Freitas, L., Siqueira, D. S., & Cunha, J. M. (2015). Variabilidade espacial e densidade amostral da suscetibilidade magnética e dos atributos de Argissolos da Região de Manicoré, AM. Revista Brasileira de Ciência do Solo, https://doi.org/10.1590/01000683rbcs20140496

  • Oliver, M. A., & Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. CATENA. https://doi.org/10.1016/j.catena.2013.09.006

    Article  Google Scholar 

  • Oliver, M. A. (2010). Geostatistical applications for precision agriculture. Springer. https://doi.org/10.1007/978-90-481-9133-8

  • Reis, N. J., & Almeida, M. E. (2010). Arcabouço geológico. In M. A. M. Maia, & J. L. Marmos (Eds.), Geodiversidade do estado do Amazonas. CPRM – Serviço Geológico do Brasil.

  • Reis, N. J., Almeida, M. E., Riker, S. L., & Ferreira, A. L. (2006). Geologia e Recursos Minerais do Estado do Amazonas. CPRM - Serviço Geológico do Brasil.

  • Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Araújo Filho, J. C., Oliveira, J. B., & Cunha, T. J. F. (2018). Sistema Brasileiro de Classificação de Solos (5a ed.). Brasília: Embrapa.

    Google Scholar 

  • Santos, H. L., Marques Júnior, J., Matias, S. S., Siqueira, D. S., & Martins Filho, M. V. (2013). Erosion factors and magnetic susceptibility in different compartments of a slope in Gilbués-PI, Brazil. Engenharia Agrícola, https://doi.org/10.1590/s0100-69162013000100008

  • Silva Junior, C. A., Boechat, C. L., & Carvalho, L. A. (2012). Change in soil fertility in Amazonian forest conversion for different systems in the northern state of Para, Brazil. Bioscience Journal, 28(4), 566–572. http://www.seer.ufu.br/index.php/biosciencejournal/article/view/13640

  • Silva, A. C., Whalen, M. T., Hladil, J., Chadimova, L., Chen, D., Spassov, S., Boulvain, F., & Devleeschouwer, X. (2015). Magnetic susceptibility application: A window onto ancient environments and climatic variations: Foreword. Geological Society, London, Special Publications,. https://doi.org/10.1144/sp414.0

    Article  Google Scholar 

  • Silva, A. J. P., Lopes, R. C., Vasconcelos, A. M., & Bahia, R. B. C. (2003). Bacias sedimentares paleozóicas e meso-cenozóicas interiores. In L. A. Bizzi, C. Schobbenhaus, R.M. Vidotti, J. H. Gonçalves (Eds.), Geologia, tectônica e recursos minerais do Brasil: texto, mapas & SIG. CPRM – Serviço Geológico do Brasil

  • Siqueira, D. S., Marques, J., Jr., Pereira, G. T., Barbosa, R. S., Teixeira, D. B., & Peluco, R. G. (2014). Sampling density and proportion for the characterization of the variability of Oxisol attributes on different materials. Geoderma. https://doi.org/10.1016/j.geoderma.2014.04.037

    Article  Google Scholar 

  • Siqueira, D. S., Marques, J., Jr., Pereira, G. T., Teixeira, D. B., Vasconcelos, V., Júnior, O. C., & Martins, E. D. S. (2015). Detailed mapping unit design based on soil–landscape relation and spatial variability of magnetic susceptibility and soil color. CATENA. https://doi.org/10.1016/j.catena.2015.07.010

    Article  Google Scholar 

  • Siqueira, D. S., Marques Júnior, J., Teixeira, D. D. B., Matias, S. S. R., Camargo, L. A., & Pereira, G. T. (2016). Magnetic susceptibility for characterizing areas with different potentials for sugarcane production. Pesquisa Agropecuária Brasileira. https://doi.org/10.1590/S0100-204X2016000900034

    Article  Google Scholar 

  • Soares, R. V. (1977). The use of prescribed fire in forest management in the state of Paraná, Brazil. PhD Thesis, University of Washington, Washington, DC.

  • Souza Braz, A. M., Fernandes, A. R., & Alleoni, L. R. F. (2011). Soil attributes after the conversion from forest to pasture in Amazon. Land Degradation & Development. https://doi.org/10.1002/ldr.1100

    Article  Google Scholar 

  • Souza, F. G., Campos, M. C. C., Brito Filho, E. G., Cunha, J. M., Lima, A. F. L., Sales, M. C. G., & Santos, L. A. C. (2019). Physical attributes of soil under amazon forest conversion for different crop systems in southern Amazonas, Brazil. Canadian Journal of Soil Science. https://doi.org/10.1139/cjss-2019-0070

    Article  Google Scholar 

  • Souza, Z. M. D., Marques Júnior, J., & Pereira, G. T. (2009). Geoestatística e atributos do solo em áreas cultivadas com cana-de-açúcar. Ciência Rural. https://doi.org/10.1590/s0103-84782009005000243

    Article  Google Scholar 

  • Teixeira, D. D., Marques, J., Jr., Siqueira, D. S., Vasconcelos, V., Carvalho, O. A., Jr., Martins, É. S., & Pereira, G. T. (2017a). Sample planning for quantifying and mapping magnetic susceptibility, clay content, and base saturation using auxiliary information. Geoderma. https://doi.org/10.1016/j.geoderma.2017.06.001

    Article  Google Scholar 

  • Teixeira, P. C., Donagema, G. K., Ademir, F., & Teixeira, W. G. (2017b). Manual de métodos de análise de solo (3a Edn,). Embrapa.

    Google Scholar 

  • Teixeira, W. G., Arruda, W., Shinzato, E., Macedo, R. S., Martins, G. C., Lima, H. N., & Rodrigues, T. E. (2010). Solos. In: M. A. M. Maia, & J. L. Marmos (Eds.), Geodiversidade do estado do Amazonas. CPRM – Serviço Geológico do Brasil.

  • Thompson, R., & Oldfield, F. (1986). Environmental magnetism.

  • Vagapov, I. M., Gugalinskaya, L. A., & Alifanov, V. M. (2013). Spatial variations of the magnetic susceptibility in the profiles of paleocryomorphic soils. Eurasian Soil Science. https://doi.org/10.1134/s1064229313030113

    Article  Google Scholar 

  • Valeriano, M. M., & Prado, H. (2001). Técnicas de geoprocessamento e de amostragem para o mapeamento de atributos anisotrópicos do solo. Revista Brasileira De Ciência Do Solo. https://doi.org/10.1590/s0100-06832001000400022

    Article  Google Scholar 

  • Vieira, S. R. (1995). Curso de atualização em conservação do solo - Uso de geoestatística. Campinas, IAC, 1 e 2.

  • Warrick, A. W., & Nielsen, D. R. (1980). Spatial variability of soil physical properties in the field. In Applications of soil physics (pp. 319–344). https://doi.org/10.1016/b978-0-12-348580-9.50018-3

  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. Wiley.

    Book  Google Scholar 

  • White, J. G., & Zasoski, R. J. (1999). Mapping soil micronutrients. Field Crops Research. https://doi.org/10.1016/s0378-4290(98)00130-0

    Article  Google Scholar 

  • WRB (World reference base for soil resources). (2014, update 2015). International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports Nº. 106. FAO, Rome, Italia

  • Yamamoto, J. K., & Landim, P. M. B. (2015). Geoestatística: conceitos e aplicações. Oficina de textos.

  • Yang, P., Byrne, J. M., & Yang, M. (2016). Spatial variability of soil magnetic susceptibility, organic carbon and total nitrogen from farmland in northern China. CATENA. https://doi.org/10.1016/j.catena.2016.05.025

    Article  Google Scholar 

  • Yu, Y., Zhang, K., & Liu, L. (2017). Evaluation of the influence of cultivation period on soil redistribution in northeastern China using magnetic susceptibility. Soil and Tillage Research. https://doi.org/10.1016/j.still.2017.05.006

    Article  Google Scholar 

  • Zawadzki, J., Fabijańczyk, P., Magiera, T., & Rachwał, M. (2015). Geostatistical microscale study of magnetic susceptibility in soil profile and magnetic indicators of potential soil pollution. Water, Air, & Soil Pollution,. https://doi.org/10.1007/s11270-015-2395-5

    Article  Google Scholar 

  • Zimmermann, B., Elsenbeer, H., & Moraes, J. M. (2006). The influence of land-use changes on soil hydraulic properties: Implications for runoff generation. Forest Ecology and Management. https://doi.org/10.1016/j.foreco.2005.10.070

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Coordination for the Improvement of Higher Education Personnel (CAPES) for funding the study, to the Federal University of Amazonas (UFAM), to the members of the Amazon Environment and Soil Research Group (GPSAA) for assistance in the field and laboratory, and to the José Luiz Vonzuben for his disposition in the translation review of this article willingly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wildson Benedito Mendes Brito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, W.B.M., Campos, M.C.C., de Souza, F.G. et al. Spatial patterns of magnetic susceptibility optimized by anisotropic correction in different Alisols in southern Amazonas, Brazil. Precision Agric 23, 419–449 (2022). https://doi.org/10.1007/s11119-021-09843-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-021-09843-6

Keywords

Navigation