Skip to main content
Log in

Unconditional stability and optimal error estimates of a Crank-Nicolson Legendre-Galerkin method for the two-dimensional second-order wave equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper presents a fully discrete scheme by discretizing the space with the Legendre-Galerkin method and the time with the Crank-Nicolson method to solve the two-dimensional second-order wave equation. Unconditional stability and optimal error estimates in both L2 and H1 norms of the fully discrete Crank-Nicolson Galerkin method are obtained. Numerical results confirm exponential convergence of the proposed method in space and second-order convergence in time. Also, the numerical experiments show the discrete energy conservation and efficiency of long-time numerical calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bause, M., Köcher, U., Radu, F.A., Schieweck, F.: Post-processed Galerkin approximation of improved order for wave equations. Math. Comp. 89 (322), 595–627 (2020). https://doi.org/10.1090/mcom/3464

    Article  MathSciNet  Google Scholar 

  2. Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, pp 209–486. Elsevier, Amsterdam (1997)

  3. Billingham, J., King, A.: Wave Motion. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Chou, C., Shu, C., Xing, Y.: Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88–107 (2014)

    Article  MathSciNet  Google Scholar 

  5. Gao, H., Li, B., Sun, W.: Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity. SIAM J. Numer. Anal. 52(3), 1183–1202 (2014). https://doi.org/10.1137/130918678

    Article  MathSciNet  Google Scholar 

  6. Grote, M., Mehlin, M., Sauter, S.: Convergence analysis of energy conserving explicit local time-stepping methods for the wave equation. SIAM J. Numer. Anal. 56(2), 994–1021 (2018). https://doi.org/10.1137/17M1121925

    Article  MathSciNet  Google Scholar 

  7. Grote, M., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006). https://doi.org/10.1137/05063194X

    Article  MathSciNet  Google Scholar 

  8. Grote, M., Schötzau, D.: Optimal error estimates for the fully discrete interior penalty DG method for the wave equation. J. Sci. Comput. 40(1-3), 257–272 (2009). https://doi.org/10.1007/s10915-008-9247-z

    Article  MathSciNet  Google Scholar 

  9. Hou, B., Liang, D.: Energy-preserving time high-order AVF compact finite difference schemes for nonlinear wave equations with variable coefficients. J. Comput. Phys. 421(109738), 27 (2020). https://doi.org/10.1016/j.jcp.2020.109738

    MathSciNet  Google Scholar 

  10. Li, D., Wang, J.: Unconditionally optimal error analysis of Crank-Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J. Sci. Comput. 72 (2), 892–915 (2017). https://doi.org/10.1007/s10915-017-0381-3

    Article  MathSciNet  Google Scholar 

  11. Li, M., Shi, D., Wang, J.: Unconditional superconvergence analysis of a linearized Crank-Nicolson Galerkin FEM for generalized Ginzburg-Landau equation. Comput. Math. Appl. 79(8), 2411–2425 (2020). https://doi.org/10.1016/j.camwa.2019.11.008

    Article  MathSciNet  Google Scholar 

  12. Liu, W., Sun, J., Wu, B.: Space-time spectral method for the two-dimensional generalized sine-Gordon equation. J. Math. Anal. Appl. 427(2), 787–804 (2015)

    Article  MathSciNet  Google Scholar 

  13. Shan, Y., Liu, W., Wu, B.: Space–time Legendre–Gauss–Lobatto collocation method for two-dimensional generalized sine-Gordon equation. Appl. Numer. Math. 122, 92–107 (2017)

    Article  MathSciNet  Google Scholar 

  14. Shen, J.: Efficient spectral-Galerkin method I. Direct solvers for second- and fourth-order equations by using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489–1505 (1994)

    Article  MathSciNet  Google Scholar 

  15. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer-Verlag, New York (2011)

    Book  Google Scholar 

  16. Shi, D., Wang, J.: Unconditional superconvergence analysis of a Crank-Nicolson Galerkin FEM for nonlinear Schrödinger equation. J. Sci. Comput. 72 (3), 1093–1118 (2017). https://doi.org/10.1007/s10915-017-0390-2

    Article  MathSciNet  Google Scholar 

  17. Shi, W., Wu, X., Xia, J.: Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations. J. Comput. Phys. 231(22), 7671–7694 (2012). https://doi.org/10.1016/j.jcp.2012.07.004

    Article  MathSciNet  Google Scholar 

  18. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd Ed. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  19. Wang, J.: Unconditional stability and convergence of Crank-Nicolson Galerkin FEMs for a nonlinear Schrödinger-Helmholtz system. Numer. Math. 139(2), 479–503 (2018). https://doi.org/10.1007/s00211-017-0944-0

    Article  MathSciNet  Google Scholar 

  20. Wu, X.: A note on stability of multidimensional adapted Runge-Kutta-Nyström methods for oscillatory systems. Appl. Math. Model. 36(12), 6331–6337 (2012). https://doi.org/10.1016/j.apm.2012.01.053

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for careful reading of the paper and for their useful comments and suggestions which have improved the paper.

Funding

The research of the first author was supported by the National Natural Science Foundation of China (Nos. 11801120 and 11771107), the Fundamental Research Funds for the Central Universities (Grant No.HIT.NSRIF.2020081), the Natural Science Foundation of Heilongjiang Province (No. LH2020A004) and the Guangdong Basic and Applied Basic Research Foundation (No. 2020B1515310006). The research of the second author was supported by the National Natural Science Foundation of China (Nos. 11971131, U1637208, 61873071, 51476047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boying Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Proof of Lemma 2.2

Appendix. Proof of Lemma 2.2

Derive the inequality: for \(v\in {V_{N}^{2}}\),

$$ 4 \| v\|^{2} \le \mathcal{A}(v,v)\le \frac{1}{2}N(N+1) (N^{2}+3N+3) \| v\|^{2}. $$
(A.1)

Recall that inverse inequality (cf. [15, P. 115]): for \(v\in P_{N}(\supseteq V_{N}),\)

$$ {\int}^{1}_{-1} \left( \partial_{x} v\right)^{2}\mathrm{d} x \le \left( \sum\limits_{n=0}^{N} n(n+1)(n+1 / 2)\right) {\int}^{1}_{-1}v^{2}\mathrm{d} x. $$
(A.2)

Using the identities

$$ \sum\limits_{n=1}^{N} n =\frac{N(N+1)}{2}, \quad \sum\limits_{n=1}^{N} n^{2} = \frac{N(N+1)(2 N+1)}{6},\quad \sum\limits_{n=1}^{N} n^{3} =\frac{N^{2}(N+1)^{2}}{4}, $$

we get

$$ {\int}^{1}_{-1} \left( \partial_{x} v\right)^{2}\mathrm{d} x \le \frac{1}{4}N(N+1) (N^{2}+3N+3){\int}^{1}_{-1}v^{2}\mathrm{d} x. $$
(A.3)

Together with (2.6), we obtain

$$ \begin{array}{@{}rcl@{}} \mathcal{A}(v,v)&=&\|\nabla u\|^{2}={\int}^{1}_{-1}{\int}^{1}_{-1}\left\{\left( \partial_{x} v\right)^{2}+\left( \partial_{y} u\right)^{2}\right\}\mathrm{d} x \mathrm{d} y\\ &=& {\int}^{1}_{-1}\left\{{\int}^{1}_{-1}\left( \partial_{x} v\right)^{2} \mathrm{d} x \right\}\mathrm{d} y+{\int}^{1}_{-1}\left\{{\int}^{1}_{-1}\left( \partial_{y} v\right)^{2} \mathrm{d} y \right\}\mathrm{d} x\\ &\le & \frac{1}{2}N(N+1) (N^{2}+3N+3) {\int}^{1}_{-1}{\int}^{1}_{-1}v^{2} \mathrm{d} x \mathrm{d} y = \frac{1}{2}N(N+1) (N^{2}+3N+3)\| v\|^{2}. \end{array} $$

Then, exploiting Poincaré inequality: for vVN,

$$ \begin{array}{@{}rcl@{}} {\int}^{1}_{-1}v^{2}\mathrm{d} x &=& {\int}^{1}_{-1}\left( {\int}^{x}_{-1}1\cdot \partial_{x} v(s) \mathrm{d} s\right)^{2}\mathrm{d} x \le {\int}^{1}_{-1}\left\{(1+x){\int}^{x}_{-1} \left( \partial_{x} v(s)\right)^{2} \mathrm{d} s\right\} \mathrm{d} x \\ &\le& {\int}^{1}_{-1} \left( \partial_{x} v\right)^{2} \mathrm{d} x{\int}^{1}_{-1}(1+x)\mathrm{d} x =2{\int}^{1}_{-1} \left( \partial_{x} v\right)^{2} \mathrm{d} x. \end{array} $$
(A.4)

Together with (2.6), we obtain

$$ \begin{array}{@{}rcl@{}} \mathcal{A}(v,v) &=&\|\nabla v\|^{2}={\int}^{1}_{-1}{\int}^{1}_{-1}\left\{\left( \partial_{x} v\right)^{2}+\left( \partial_{y} v\right)^{2}\right\}\mathrm{d} x \mathrm{d} y\\ &=& {\int}^{1}_{-1}\left\{{\int}^{1}_{-1}\left( \partial_{x} v\right)^{2} \mathrm{d} x \right\}\mathrm{d} y+{\int}^{1}_{-1}\left\{{\int}^{1}_{-1}\left( \partial_{y} v\right)^{2}\mathrm{d} y \right\}\mathrm{d} x\\ &\ge & 4 {\int}^{1}_{-1}{\int}^{1}_{-1}v^{2} \mathrm{d} x \mathrm{d} y = 4 \| v\|^{2}. \end{array} $$
(A.5)

By Definition 2.1 with vu, we have

$$ \mathcal{A}(u,u)=\lambda_{\mathcal{A}} (u,u). $$

By (A.1), we obtain

$$ 4 \| u\|^{2}=\lambda_{\mathcal{A}}\| u\|^{2}\le \frac{1}{2}N(N+1) (N^{2}+3N+3) \| u\|^{2}, $$

which implies (2.7) and \(\lambda _{\mathcal {A}}\in \mathbb {R}^{+}\). This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wu, B. Unconditional stability and optimal error estimates of a Crank-Nicolson Legendre-Galerkin method for the two-dimensional second-order wave equation. Numer Algor 90, 137–158 (2022). https://doi.org/10.1007/s11075-021-01182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01182-x

Keywords

Navigation