Skip to main content
Log in

New insights into the roles of glucocorticoid signaling dysregulation in pathological cardiac hypertrophy

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Pathological cardiac hypertrophy is a process of abnormal remodeling of the myocardium in response to stress overload or ischemia that results in myocardial injury, which is an independent risk factor for the increased morbidity and mortality of heart failure. Elevated circulating glucocorticoids (GCs) levels are associated with an increased risk of pathological cardiac hypertrophy, but the exact role remains unclear. In the heart, GCs exerts physiological and pharmacological effects by binding the glucocorticoid receptor (GR, NR3C1). However, under the state of tissue damage or oxidative stress, GCs can also bind the closely related mineralocorticoid receptor (MR, NR3C2) to exert a detrimental effect on cardiac function. In addition, the bioavailability of GCs at the cellular level is mainly regulated by tissue-specific metabolic enzymes 11β-hydroxysteroid dehydrogenases (11β-HSDs), including 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and type 2 (11β-HSD2), which catalyze the interconversion of active GCs. In this paper, we provide an overview of GC signaling and its physiological roles in the heart and highlight the dynamic and diverse roles of GC signaling dysregulation, mediated by excessive ligand GCs levels, GR/MR deficiency or overexpression, and local GCs metabolic disorder by 11β-HSDs, in the pathology of cardiac hypertrophy. Our findings will provide new ideas and insights for the search for appropriate intervention targets for pathological cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118(6):1021–1040. https://doi.org/10.1161/CIRCRESAHA.115.306565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15(7):387–407. https://doi.org/10.1038/s41569-018-0007-y

    Article  CAS  PubMed  Google Scholar 

  3. Tang X, Chen XF, Wang NY, Wang XM, Liang ST, Zheng W et al (2017) SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy. Circulation 136(21):2051–2067. https://doi.org/10.1161/CIRCULATIONAHA.117.028728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bertero E, Maack C (2018) Metabolic remodelling in heart failure. Nat Rev Cardiol 15(8):457–470. https://doi.org/10.1038/s41569-018-0044-6

    Article  CAS  PubMed  Google Scholar 

  5. Nayor M, Enserro DM, Vasan RS, Xanthakis V (2016) Cardiovascular health status and incidence of heart failure in the Framingham offspring study. Circ Heart Fail 9(1):e002416. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002416

    Article  PubMed  Google Scholar 

  6. Oakley RH, Cidlowski JA (2013) The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol 132(5):1033–1044. https://doi.org/10.1016/j.jaci.2013.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21(1):55–89. https://doi.org/10.1210/edrv.21.1.0389

    Article  CAS  PubMed  Google Scholar 

  8. Busillo JM, Cidlowski JA (2013) The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol Metab 24(3):109–119. https://doi.org/10.1016/j.tem.2012.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N Engl J Med 353(16):1711–1723. https://doi.org/10.1056/NEJMra050541

    Article  CAS  PubMed  Google Scholar 

  10. Pujades-Rodriguez M, Morgan AW, Cubbon RM, Wu J (2020) Dose-dependent oral glucocorticoid cardiovascular risks in people with immune-mediated inflammatory diseases: a population-based cohort study. PLoS Med 17(12):e1003432. https://doi.org/10.1371/journal.pmed.1003432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vedder D, Nurmohamed MT (2021) Increased cardiovascular risk due to glucocorticoids: how strong is the evidence?. Ned Tijdschr Geneeskd 165

  12. Moya FB, Pineda Galindo LF, Garcia de la Pena M (2016) Impact of chronic glucocorticoid treatment on cardiovascular risk profile in patients with systemic lupus erythematosus. J Clin Rheumatol 22(1):8–12. https://doi.org/10.1097/RHU.0000000000000335

  13. Miller WL, Auchus RJ (2011) The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 32(1):81–151. https://doi.org/10.1210/er.2010-0013

    Article  PubMed  Google Scholar 

  14. Seckl JR (2004) 11beta-hydroxysteroid dehydrogenases: changing glucocorticoid action. Curr Opin Pharmacol 4(6):597–602. https://doi.org/10.1016/j.coph.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  15. Hadoke PW, Iqbal J, Walker BR (2009) Therapeutic manipulation of glucocorticoid metabolism in cardiovascular disease. Br J Pharmacol 156(5):689–712. https://doi.org/10.1111/j.1476-5381.2008.00047.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morgan SA, McCabe EL, Gathercole LL, Hassan-Smith ZK, Larner DP, Bujalska IJ et al (2014) 11beta-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess. Proc Natl Acad Sci U S A 111(24):E2482–E2491. https://doi.org/10.1073/pnas.1323681111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS et al (2004) 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 25(5):831–866. https://doi.org/10.1210/er.2003-0031

    Article  CAS  PubMed  Google Scholar 

  18. Yang S, Zhang L (2004) Glucocorticoids and vascular reactivity. Curr Vasc Pharmacol 2(1):1–12. https://doi.org/10.2174/1570161043476483

    Article  PubMed  Google Scholar 

  19. Oakley RH, Cidlowski JA (2015) Glucocorticoid signaling in the heart: a cardiomyocyte perspective. J Steroid Biochem Mol Biol 153:27–34. https://doi.org/10.1016/j.jsbmb.2015.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Richardson RV, Batchen EJ, Denvir MA, Gray GA, Chapman KE (2016) Cardiac GR and MR: From development to pathology. Trends Endocrinol Metab 27(1):35–43. https://doi.org/10.1016/j.tem.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  21. Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240(4854):889–895. https://doi.org/10.1126/science.3283939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mihailidou AS, Funder JW (2005) Nongenomic effects of mineralocorticoid receptor activation in the cardiovascular system. Steroids 70(5–7):347–351. https://doi.org/10.1016/j.steroids.2005.02.004

    Article  CAS  PubMed  Google Scholar 

  23. Samarasinghe RA, Witchell SF, DeFranco DB (2012) Cooperativity and complementarity: synergies in non-classical and classical glucocorticoid signaling. Cell Cycle 11(15):2819–2827. https://doi.org/10.4161/cc.21018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grad I, Picard D (2007) The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol 275(1–2):2–12. https://doi.org/10.1016/j.mce.2007.05.018

    Article  CAS  PubMed  Google Scholar 

  25. Oakley RH, Cidlowski JA (2011) Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J Biol Chem 286(5):3177–3184. https://doi.org/10.1074/jbc.R110.179325

    Article  CAS  PubMed  Google Scholar 

  26. Surjit M, Ganti KP, Mukherji A, Ye T, Hua G, Metzger D et al (2011) Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell 145(2):224–241. https://doi.org/10.1016/j.cell.2011.03.027

    Article  CAS  PubMed  Google Scholar 

  27. Kadmiel M, Cidlowski JA (2013) Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci 34(9):518–530. https://doi.org/10.1016/j.tips.2013.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhargava A, Pearce D (2004) Mechanisms of mineralocorticoid action: determinants of receptor specificity and actions of regulated gene products. Trends Endocrinol Metab 15(4):147–153. https://doi.org/10.1016/j.tem.2004.03.009

    Article  CAS  PubMed  Google Scholar 

  29. Latouche C, Sainte-Marie Y, Steenman M, Castro Chaves P, Naray-Fejes-Toth A, Fejes-Toth G et al (2010) Molecular signature of mineralocorticoid receptor signaling in cardiomyocytes: from cultured cells to mouse heart. Endocrinology 151(9):4467–4476. https://doi.org/10.1210/en.2010-0237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chapman K, Holmes M, Seckl J (2013) 11beta-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 93(3):1139–1206. https://doi.org/10.1152/physrev.00020.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Funder JW (2013) Mineralocorticoid receptor antagonists: emerging roles in cardiovascular medicine. Integr Blood Press Control 6:129–138. https://doi.org/10.2147/IBPC.S13783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Funder JW (2007) Mineralocorticoid receptor activation and oxidative stress. Hypertension 50(5):840–841. https://doi.org/10.1161/HYPERTENSIONAHA.107.098012

    Article  CAS  PubMed  Google Scholar 

  33. Cain DW, Cidlowski JA (2015) Specificity and sensitivity of glucocorticoid signaling in health and disease. Best Pract Res Clin Endocrinol Metab 29(4):545–556. https://doi.org/10.1016/j.beem.2015.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fowden AL, Li J, Forhead AJ (1998) Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc Nutr Soc 57(1):113–122. https://doi.org/10.1079/pns19980017

    Article  CAS  PubMed  Google Scholar 

  35. Moisiadis VG, Matthews SG (2014) Glucocorticoids and fetal programming part 1: Outcomes. Nat Rev Endocrinol 10(7):391–402. https://doi.org/10.1038/nrendo.2014.73

    Article  CAS  PubMed  Google Scholar 

  36. Yoder B, Martin H, McCurnin DC, Coalson JJ (2002) Impaired urinary cortisol excretion and early cardiopulmonary dysfunction in immature baboons. Pediatr Res 51(4):426–432. https://doi.org/10.1203/00006450-200204000-00006

    Article  CAS  PubMed  Google Scholar 

  37. Rog-Zielinska EA, Thomson A, Kenyon CJ, Brownstein DG, Moran CM, Szumska D et al (2013) Glucocorticoid receptor is required for foetal heart maturation. Hum Mol Genet 22(16):3269–3282. https://doi.org/10.1093/hmg/ddt182

    Article  CAS  PubMed  Google Scholar 

  38. Rog-Zielinska EA, Craig MA, Manning JR, Richardson RV, Gowans GJ, Dunbar DR et al (2015) Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-1alpha. Cell Death Differ 22(7):1106–1116. https://doi.org/10.1038/cdd.2014.181

    Article  CAS  PubMed  Google Scholar 

  39. Wilson KS, Baily J, Tucker CS, Matrone G, Vass S, Moran C et al (2015) Early-life perturbations in glucocorticoid activity impacts on the structure, function and molecular composition of the adult zebrafish (Danio rerio) heart. Mol Cell Endocrinol 414:120–131. https://doi.org/10.1016/j.mce.2015.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lefer AM (1968) Influence of corticosteroids on mechanical performance of isolated rat papillary muscles. Am J Physiol 214(3):518–524. https://doi.org/10.1152/ajplegacy.1968.214.3.518

    Article  CAS  PubMed  Google Scholar 

  41. Penefsky ZJ, Kahn M (1971) Inotropic effects of dexamethasone in mammalian heart muscle. Eur J Pharmacol 15(3):259–266. https://doi.org/10.1016/0014-2999(71)90091-4

    Article  CAS  PubMed  Google Scholar 

  42. Narayanan N, Yang C, Xu A (2004) Dexamethasone treatment improves sarcoplasmic reticulum function and contractile performance in aged myocardium. Mol Cell Biochem 266(1–2):31–36. https://doi.org/10.1023/b:mcbi.0000049130.58074.73

    Article  CAS  PubMed  Google Scholar 

  43. Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262(5134):740–744. https://doi.org/10.1126/science.8235594

    Article  CAS  PubMed  Google Scholar 

  44. Oakley RH, Ren R, Cruz-Topete D, Bird GS, Myers PH, Boyle MC et al (2013) Essential role of stress hormone signaling in cardiomyocytes for the prevention of heart disease. Proc Natl Acad Sci U S A 110(42):17035–17040. https://doi.org/10.1073/pnas.1302546110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ren R, Cidlowski JA (2010) Glucocorticoid signaling in cardiac disease. Horm Mol Biol Clin Investig 4(2):559–564. https://doi.org/10.1515/HMBCI.2010.051

    Article  CAS  PubMed  Google Scholar 

  46. Aoyama T, Matsui T, Novikov M, Park J, Hemmings B, Rosenzweig A (2005) Serum and glucocorticoid-responsive kinase-1 regulates cardiomyocyte survival and hypertrophic response. Circulation 111(13):1652–1659. https://doi.org/10.1161/01.CIR.0000160352.58142.06

    Article  CAS  PubMed  Google Scholar 

  47. Ren R, Oakley RH, Cruz-Topete D, Cidlowski JA (2012) Dual role for glucocorticoids in cardiomyocyte hypertrophy and apoptosis. Endocrinology 153(11):5346–5360. https://doi.org/10.1210/en.2012-1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cruz-Topete D, He B, Xu X, Cidlowski JA (2016) Kruppel-like factor 13 is a major mediator of glucocorticoid receptor signaling in cardiomyocytes and protects these cells from DNA damage and death. J Biol Chem 291(37):19374–19386. https://doi.org/10.1074/jbc.M116.725903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pearl JM, Nelson DP, Schwartz SM, Wagner CJ, Bauer SM, Setser EA et al (2002) Glucocorticoids reduce ischemia-reperfusion-induced myocardial apoptosis in immature hearts. Ann Thorac Surg 74(3):830–6; discussion 6–7. https://doi.org/10.1016/s0003-4975(02)03843-2

  50. Frustaci A, Letizia C, Verardo R, Grande C, Petramala L, Russo MA et al (2016) Cushing syndrome cardiomyopathy: clinicopathologic impact of cortisol normalization. Circ Cardiovasc Imaging 9(4):e004569. https://doi.org/10.1161/CIRCIMAGING.116.004569

    Article  PubMed  Google Scholar 

  51. Sugihara N, Shimizu M, Kita Y, Shimizu K, Ino H, Miyamori I et al (1992) Cardiac characteristics and postoperative courses in Cushing’s syndrome. Am J Cardiol 69(17):1475–1480. https://doi.org/10.1016/0002-9149(92)90904-d

    Article  CAS  PubMed  Google Scholar 

  52. Muiesan ML, Lupia M, Salvetti M, Grigoletto C, Sonino N, Boscaro M et al (2003) Left ventricular structural and functional characteristics in Cushing’s syndrome. J Am Coll Cardiol 41(12):2275–2279. https://doi.org/10.1016/s0735-1097(03)00493-5

    Article  PubMed  Google Scholar 

  53. Agnew EJ, Ivy JR, Stock SJ, Chapman KE (2018) Glucocorticoids, antenatal corticosteroid therapy and fetal heart maturation. J Mol Endocrinol 61(1):R61–R73. https://doi.org/10.1530/JME-18-0077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Asztalos E (2012) Antenatal corticosteroids: a risk factor for the development of chronic disease. J Nutr Metab 2012:930591. https://doi.org/10.1155/2012/930591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Carson R, Monaghan-Nichols AP, DeFranco DB, Rudine AC (2016) Effects of antenatal glucocorticoids on the developing brain. Steroids 114:25–32. https://doi.org/10.1016/j.steroids.2016.05.012

    Article  PubMed  PubMed Central  Google Scholar 

  56. Young MJ, Clyne CD, Cole TJ, Funder JW (2001) Cardiac steroidogenesis in the normal and failing heart. J Clin Endocrinol Metab 86(11):5121–5126. https://doi.org/10.1210/jcem.86.11.7925

    Article  PubMed  Google Scholar 

  57. Nakamura S, Yoshimura M, Nakayama M, Ito T, Mizuno Y, Harada E et al (2004) Possible association of heart failure status with synthetic balance between aldosterone and dehydroepiandrosterone in human heart. Circulation 110(13):1787–1793. https://doi.org/10.1161/01.CIR.0000143072.36782.51

    Article  CAS  PubMed  Google Scholar 

  58. Ohtani T, Ohta M, Yamamoto K, Mano T, Sakata Y, Nishio M et al (2007) Elevated cardiac tissue level of aldosterone and mineralocorticoid receptor in diastolic heart failure: Beneficial effects of mineralocorticoid receptor blocker. Am J Physiol Regul Integr Comp Physiol 292(2):R946–R954. https://doi.org/10.1152/ajpregu.00402.2006

    Article  CAS  PubMed  Google Scholar 

  59. Katoh D, Hongo K, Ito K, Yoshino T, Kayama Y, Kawai M et al (2014) Corticosteroids increase intracellular free sodium ion concentration via glucocorticoid receptor pathway in cultured neonatal rat cardiomyocytes. Int J Cardiol Heart Vessel 3:49–56. https://doi.org/10.1016/j.ijchv.2014.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lister K, Autelitano DJ, Jenkins A, Hannan RD, Sheppard KE (2006) Cross talk between corticosteroids and alpha-adrenergic signalling augments cardiomyocyte hypertrophy: a possible role for SGK1. Cardiovasc Res 70(3):555–565. https://doi.org/10.1016/j.cardiores.2006.02.010

    Article  CAS  PubMed  Google Scholar 

  61. Rossier MF, Python M, Maturana AD (2010) Contribution of mineralocorticoid and glucocorticoid receptors to the chronotropic and hypertrophic actions of aldosterone in neonatal rat ventricular myocytes. Endocrinology 151(6):2777–2787. https://doi.org/10.1210/en.2009-1375

    Article  CAS  PubMed  Google Scholar 

  62. Severinova E, Alikunju S, Deng W, Dhawan P, Sayed N, Sayed D (2019) Glucocorticoid Receptor-Binding and Transcriptome Signature in Cardiomyocytes. J Am Heart Assoc 8(6):e011484. https://doi.org/10.1161/JAHA.118.011484

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sainte-Marie Y, Nguyen Dinh Cat A, Perrier R, Mangin L, Soukaseum C, Peuchmaur M et al (2007) Conditional glucocorticoid receptor expression in the heart induces atrio-ventricular block. FASEB J 21(12):3133–41. https://doi.org/10.1096/fj.07-8357com

  64. Cole TJ, Blendy JA, Monaghan AP, Krieglstein K, Schmid W, Aguzzi A et al (1995) Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev 9(13):1608–1621. https://doi.org/10.1101/gad.9.13.1608

    Article  CAS  PubMed  Google Scholar 

  65. Richardson RV, Batchen EJ, Thomson AJ, Darroch R, Pan X, Rog-Zielinska EA et al (2017) Glucocorticoid receptor alters isovolumetric contraction and restrains cardiac fibrosis. J Endocrinol 232(3):437–450. https://doi.org/10.1530/joe-16-0458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cruz-Topete D, Oakley RH, Carroll NG, He B, Myers PH, Xu X et al (2019) Deletion of the cardiomyocyte glucocorticoid receptor leads to sexually dimorphic changes in cardiac gene expression and progression to heart failure. J Am Heart Assoc 8(15):e011012. https://doi.org/10.1161/JAHA.118.011012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD et al (2013) Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155(6):1309–1322. https://doi.org/10.1016/j.cell.2013.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Matsuhashi T, Endo J, Katsumata Y, Yamamoto T, Shimizu N, Yoshikawa N et al (2019) Pressure overload inhibits glucocorticoid receptor transcriptional activity in cardiomyocytes and promotes pathological cardiac hypertrophy. J Mol Cell Cardiol 130:122–130. https://doi.org/10.1016/j.yjmcc.2019.03.019

    Article  CAS  PubMed  Google Scholar 

  69. Liang Q, De Windt LJ, Witt SA, Kimball TR, Markham BE, Molkentin JD (2001) The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J Biol Chem 276(32):30245–30253. https://doi.org/10.1074/jbc.M102174200

    Article  CAS  PubMed  Google Scholar 

  70. van Oort RJ, van Rooij E, Bourajjaj M, Schimmel J, Jansen MA, van der Nagel R et al (2006) MEF2 activates a genetic program promoting chamber dilation and contractile dysfunction in calcineurin-induced heart failure. Circulation 114(4):298–308. https://doi.org/10.1161/CIRCULATIONAHA.105.608968

    Article  CAS  PubMed  Google Scholar 

  71. Ouvrard-Pascaud A, Sainte-Marie Y, Benitah JP, Perrier R, Soukaseum C, Nguyen Dinh Cat A et al (2005) Conditional mineralocorticoid receptor expression in the heart leads to life-threatening arrhythmias. Circulation 111(23):3025–33. https://doi.org/10.1161/CIRCULATIONAHA.104.503706

  72. Fraccarollo D, Berger S, Galuppo P, Kneitz S, Hein L, Schutz G et al (2011) Deletion of cardiomyocyte mineralocorticoid receptor ameliorates adverse remodeling after myocardial infarction. Circulation 123(4):400–408. https://doi.org/10.1161/CIRCULATIONAHA.110.983023

    Article  CAS  PubMed  Google Scholar 

  73. Lother A, Berger S, Gilsbach R, Rosner S, Ecke A, Barreto F et al (2011) Ablation of mineralocorticoid receptors in myocytes but not in fibroblasts preserves cardiac function. Hypertension 57(4):746–754. https://doi.org/10.1161/HYPERTENSIONAHA.110.163287

    Article  CAS  PubMed  Google Scholar 

  74. Rickard AJ, Morgan J, Bienvenu LA, Fletcher EK, Cranston GA, Shen JZ et al (2012) Cardiomyocyte mineralocorticoid receptors are essential for deoxycorticosterone/salt-mediated inflammation and cardiac fibrosis. Hypertension 60(6):1443–1450. https://doi.org/10.1161/HYPERTENSIONAHA.112.203158

    Article  CAS  PubMed  Google Scholar 

  75. Oakley RH, Cruz-Topete D, He B, Foley JF, Myers PH, Xu X et al (2019) Cardiomyocyte glucocorticoid and mineralocorticoid receptors directly and antagonistically regulate heart disease in mice. Sci Signal 12(577). https://doi.org/10.1126/scisignal.aau9685

  76. Qin W, Rudolph AE, Bond BR, Rocha R, Blomme EA, Goellner JJ et al (2003) Transgenic model of aldosterone-driven cardiac hypertrophy and heart failure. Circ Res 93(1):69–76. https://doi.org/10.1161/01.RES.0000080521.15238.E5

    Article  CAS  PubMed  Google Scholar 

  77. Nagase M, Ayuzawa N, Kawarazaki W, Ishizawa K, Ueda K, Yoshida S et al (2012) Oxidative stress causes mineralocorticoid receptor activation in rat cardiomyocytes: role of small GTPase Rac1. Hypertension 59(2):500–506. https://doi.org/10.1161/HYPERTENSIONAHA.111.185520

    Article  CAS  PubMed  Google Scholar 

  78. Funder JW (2009) Reconsidering the roles of the mineralocorticoid receptor. Hypertension 53(2):286–290. https://doi.org/10.1161/HYPERTENSIONAHA.108.119966

    Article  CAS  PubMed  Google Scholar 

  79. Mihailidou AS, Loan Le TY, Mardini M, Funder JW (2009) Glucocorticoids activate cardiac mineralocorticoid receptors during experimental myocardial infarction. Hypertension 54(6):1306–1312. https://doi.org/10.1161/HYPERTENSIONAHA.109.136242

    Article  CAS  PubMed  Google Scholar 

  80. Huang M, Liu J, Sheng Y, Lv Y, Yu J, Qi H et al (2018) 11beta-hydroxysteroid dehydrogenase type 1 inhibitor attenuates high-fat diet induced cardiomyopathy. J Mol Cell Cardiol 125:106–116. https://doi.org/10.1016/j.yjmcc.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  81. Gordon O, He Z, Gilon D, Gruener S, Pietranico-Cole S, Oppenheim A et al (2014) A transgenic platform for testing drugs intended for reversal of cardiac remodeling identifies a novel 11betaHSD1 inhibitor rescuing hypertrophy independently of re-vascularization. PLoS ONE 9(3):e92869. https://doi.org/10.1371/journal.pone.0092869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. White CI, Jansen MA, McGregor K, Mylonas KJ, Richardson RV, Thomson A et al (2016) Cardiomyocyte and vascular smooth muscle-independent 11beta-hydroxysteroid dehydrogenase 1 amplifies infarct expansion, hypertrophy, and the development of heart failure after myocardial infarction in male mice. Endocrinology 157(1):346–357. https://doi.org/10.1210/en.2015-1630

    Article  CAS  PubMed  Google Scholar 

  83. Walker BR, Yau JL, Brett LP, Seckl JR, Monder C, Williams BC et al (1991) 11 beta-hydroxysteroid dehydrogenase in vascular smooth muscle and heart: implications for cardiovascular responses to glucocorticoids. Endocrinology 129(6):3305–3312. https://doi.org/10.1210/endo-129-6-3305

    Article  CAS  PubMed  Google Scholar 

  84. Smith RE, Little PJ, Maguire JA, Stein-Oakley AN, Krozowski ZS (1996) Vascular localization of the 11 beta-hydroxysteroid dehydrogenase type II enzyme. Clin Exp Pharmacol Physiol 23(6–7):549–551. https://doi.org/10.1111/j.1440-1681.1996.tb02776.x

    Article  CAS  PubMed  Google Scholar 

  85. Iqbal J, Andrew R, Cruden NL, Kenyon CJ, Hughes KA, Newby DE et al (2014) Displacement of cortisol from human heart by acute administration of a mineralocorticoid receptor antagonist. J Clin Endocrinol Metab 99(3):915–922. https://doi.org/10.1210/jc.2013-2049

    Article  CAS  PubMed  Google Scholar 

  86. Chai W, Hofland J, Jansen PM, Garrelds IM, de Vries R, van den Bogaerdt AJ et al (2010) Steroidogenesis vs. steroid uptake in the heart: do corticosteroids mediate effects via cardiac mineralocorticoid receptors? J Hypertens 28(5):1044–53. https://doi.org/10.1097/HJH.0b013e328335c381

  87. Glorioso N, Filigheddu F, Parpaglia PP, Soro A, Troffa C, Argiolas G et al (2005) 11beta-Hydroxysteroid dehydrogenase type 2 activity is associated with left ventricular mass in essential hypertension. Eur Heart J 26(5):498–504. https://doi.org/10.1093/eurheartj/ehi070

    Article  CAS  PubMed  Google Scholar 

  88. Kotelevtsev Y, Brown RW, Fleming S, Kenyon C, Edwards CR, Seckl JR et al (1999) Hypertension in mice lacking 11beta-hydroxysteroid dehydrogenase type 2. J Clin Invest 103(5):683–689. https://doi.org/10.1172/JCI4445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Walker BR, Edwards CR (1994) Licorice-induced hypertension and syndromes of apparent mineralocorticoid excess. Endocrinol Metab Clin North Am 23(2):359–377

    Article  CAS  Google Scholar 

  90. Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR (2017) Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol 18(3):159–174. https://doi.org/10.1038/nrm.2016.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hapgood JP, Avenant C, Moliki JM (2016) Glucocorticoid-independent modulation of GR activity: implications for immunotherapy. Pharmacol Ther 165:93–113. https://doi.org/10.1016/j.pharmthera.2016.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chu WW, Rha SW, Kuchulakanti PK, Cheneau E, Torguson R, Pinnow E et al (2006) Efficacy of sirolimus-eluting stents compared with bare metal stents for saphenous vein graft intervention. Am J Cardiol 97(1):34–37. https://doi.org/10.1016/j.amjcard.2005.08.018

    Article  CAS  PubMed  Google Scholar 

  93. Gray GA, White CI, Castellan RF, McSweeney SJ, Chapman KE (2017) Getting to the heart of intracellular glucocorticoid regeneration: 11beta-HSD1 in the myocardium. J Mol Endocrinol 58(1):R1–R13. https://doi.org/10.1530/JME-16-0128

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Scientific Funding of China (No.81672264 and No.81871858).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danyan Xu.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work; there is no professional or other personal interest of any nature or kind in the manuscript entitled “New insights into the roles of glucocorticoid signaling dysregulation in pathological cardiac hypertrophy.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Chen, Y., Li, X. et al. New insights into the roles of glucocorticoid signaling dysregulation in pathological cardiac hypertrophy. Heart Fail Rev 27, 1431–1441 (2022). https://doi.org/10.1007/s10741-021-10158-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10158-x

Keywords

Navigation