Skip to main content

Advertisement

Log in

Satellite-Based Air Pollution Potential Climatology over India

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Air pollution potential indicates the ability of the atmosphere to disperse the pollutants depends on mixing height and wind speed. This parameter is essential for air dispersion modeling, mitigating air pollution, i.e., reducing harmful effects on human health, and potential site selection for establishing new industries. Five-year (2015–2019) mean monthly, seasonal, and annual maps of ventilation coefficient (VC) and air pollution potential index (APPI) were prepared for the first time for India using the inputs from daily data of planetary boundary layer height (PBLH) derived using CrIS onboard SOUMI-NPP satellite and wind speed from ERA-5. Climatology of VC and APPI over 14 cities in India was also analyzed. Below medium to very low pollution potential (VC: 6000 to > 10,000 m2/s) has been observed at the east coast of Andhra Pradesh and Tamilnadu (TN) during the winter and most of western India and New Delhi during the summer monsoon. During pre-monsoon, western Gujarat, southwest of Rajasthan, and parts of Indo-Gangetic Plains show below medium to low pollution potential. Below medium pollution potential is observed at the east coast of TN during the post-monsoon season. Annual averages of VC and APPI suggest east coastal TN and western Gujarat consistently are below medium to very low pollution potential zone, indicating their suitability for setting up new industries. Annual average VC shows the cities with increasing pollution potential as Mumbai, Chennai, Bangalore, Hyderabad, Patna, Jaisalmer, Jodhpur, Varanasi, Kolkata, Kanpur, Lucknow, New Delhi, Nagpur, and Rourkela. This information is helpful to the regulatory authorities to prioritize the air pollution mitigation measures in different cities. This study has the potential to be extended to prepare global maps of APPI to identify ventilation corridors (regions with very low pollution potential) that will reduce air pollution and its effects on human health, the environment, and the climate at large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Abiye, O. E., Akinola, O. E., Sunmonu, L. A., Ajao, A. I., & Ayoola, M. A. (2016). Atmospheric ventilation corridors and coefficients for pollution plume released from an industrial facility in Ile-Ife Suburb, Nigeria. African Journal of Environmental Science and Technology., 10(10), 338–349. https://doi.org/10.5897/AJEST2016.2128

    Article  Google Scholar 

  • Anurose, T. J., Bala Subrahamanyam, D., & Sunilkumar, S. V. (2018). Two years observations on the diurnal evolution of coastal atmospheric boundary layer features over Thiruvananthapuram (8.5° N, 76.9° E) India. Theoretical and Applied Climatology., 131, 77–90.

    Article  Google Scholar 

  • Attri, S. D., and Tyagi, A. (2010). Climate profile of India. Contribution to the Indian Network of Climate Change Assessment (NATIONAL COMMUNICATION-II). 1. 1–129. http://uchai.net/pdf/knowledge_resources/Publications/Reports/Climate%20Profile%20India_IMD.pdf

  • Balakrishnan, K., Dey, S., Gupta, T., Dhaliwal, R. S., Brauer, M., Cohen, A. J., Stanaway, J. D., Beig, G., Joshi, T. K., Aggarwal, A. N., Sabde, Y., Sadhu, H., Frostad, J., Causey, K., Godwin, W., Shukla, D. K., Kumar, G. A., Varghese, C. M., Muraleedharan, P., … Dandona, L. (2019). The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: The Global Burden of Disease Study 2017. The Lancet Planetary Health., 3(1), e26–e39. https://doi.org/10.1016/S2542-5196(18)30261-4

    Article  Google Scholar 

  • Basha, G., and Ratnam, M. V. (2009). Identification of atmospheric boundary layer height over a tropical station using high resolution radiosonde refractivity profiles: Comparison with GPS radio occultation measurements. Journal of Geophysical Research: Atmospheres. 114, D16101. https://doi.org/10.1029/2008JD011692

  • Copernicus Climate Change Service. (2017). Fifth generation of ECMWF atmospheric reanalyses of the global climate (ERA5). Copernicus Climate Change Service Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp. Accessed 15 Feb 2020.

  • Gassmann, M. I., & Mazzeo, N. A. (2000). Air pollution potential: Regional study in Argentina. Environmental Management., 25(4), 375–382. https://doi.org/10.1007/s002679910029

    Article  CAS  Google Scholar 

  • Goyal, P., Anand, S., & Gera, B. S. (2006). Assimilative capacity and pollutant dispersion studies for Gangtok city. Atmospheric Environment., 40(9), 1671–1682. https://doi.org/10.1016/j.atmosenv.2005.10.057

    Article  CAS  Google Scholar 

  • Goyal, P., & Rama, K. T. (2002). Dispersion of pollutants in convective low wind: A case study of Delhi. Atmospheric Environment., 36(12), 2071–2079. https://doi.org/10.1016/S1352-2310(01)00458-7

    Article  CAS  Google Scholar 

  • Gross, E., (1970). The national air pollution potential forecast program. ESSA technical memorandum. WBTM NMC 47, U.S. Dept. of Commerce 70(9), 1–30. https://apps.dtic.mil/sti/pdfs/AD0714568.pdf

  • Han, Y., Revercomb, H., Cromp, M., Gu, D., Johnson, D., Mooney, D., Scott, D., Strow, L., Bingham, G., Borg, L., Chen, Y., DeSlover, D., Esplin, M., Hagan, D., Jin, X., Knuteson, R., Motteler, H., Predina, J., Suwinski, L., Taylor, J., Tobin, D., Tremblay, D., Wang, Ch., Wang, L., Wang, L., & Zavyalov, V. (2013). Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. Journal of Geophysical Research: Atmospheres. 118(22), 12, 734–712, 748. https://doi.org/10.1002/2013JD020344

  • Hareef baba shaeb, K. (2019). Seasonal characteristics of atmospheric boundary layer and its associated dynamics over Central India. Asia-Pacific Journal of Atmospheric Sciences. https://doi.org/10.1007/s13143-019-00138-5

    Article  Google Scholar 

  • Hareef baba shaeb, K., Verma, M., Dutta, D., Johnson, L. R., Rao, S. S., & Seshasai, M. V. R. (2021). Comparison of temperature and humidity profiles retrieved from INSAT-3DR sounder with high resolution radiosonde measurements. AIMS Geosciences, 7(2), 180–193. https://doi.org/10.3934/geosci.2021011.

    Article  Google Scholar 

  • Hennemuth, B., & Lammert, A. (2006). Determination of the atmospheric boundary layer height from radiosonde and Lidar backscatter. Boundary-Layer Meteorology., 120(1), 181–200. https://doi.org/10.1007/s10546-005-9035-3

    Article  Google Scholar 

  • Holzworth, G. C. (1967). Mixing depths, wind speeds and air pollution potential for selected locations in the United States1. Journal of Applied Meteorology (1962-1982)., 6(6), 1039–1044.

    Article  Google Scholar 

  • Iyer, U. S., & Raj, P. E. (2013). Ventilation coefficient trends in the recent decades over four major Indian metropolitan cities. Journal of Earth System Science., 122(2), 537–549. https://doi.org/10.1007/s12040-013-0270-6

    Article  Google Scholar 

  • Kompalli, S. K., Babu, S. S., Moorthy, K. K., Manoj, M. R., Kumar, N. V. P. K., & Hareef baba Shaeb, K., & Joshi, A. K. . (2014). Aerosol black carbon characteristics over Central India: Temporal variation and its dependence on mixed layer height. Atmospheric Research., 147–148, 27–37. https://doi.org/10.1016/j.atmosres.2014.04.015

    Article  CAS  Google Scholar 

  • Krishnan, P., & Kunhikrishnan, P. K. (2004). Temporal variations of ventilation coefficient at a tropical Indian station using UHF wind profiler. Current Science., 86(3), 447–451.

    Google Scholar 

  • Kumar, K. V. D. (2019). Study of atmospheric boundary layer height from radiosonde data over a flat terrain at VBIT – Hyderabad (17.4° N – 78.5° E). International Journal of Applied Engineering Research., 14(4), 888–895.

    Google Scholar 

  • Lu, C., Deng, Q., Liu, W., Huang, B., & Shi, L. (2012). Characteristics of ventilation coefficient and its impact on urban air pollution. Journal of Central South University., 19(3), 615–622. https://doi.org/10.1007/s11771-012-1047-9

    Article  CAS  Google Scholar 

  • Manju, N., Balakrishnan, R., & Mani, N. (2002). Assimilative capacity and pollutant dispersion studies for the industrial zone of Manali. Atmospheric Environment., 36(21), 3461–3471. https://doi.org/10.1016/S1352-2310(02)00306-0

    Article  CAS  Google Scholar 

  • Prijith, S. S., Rao, P. V. N., Sujatha, P., & Dadhwal, V. K. (2016). Estimation of planetary boundary layer height using Suomi NPP-CrIS soundings. Remote Sensing Letters., 7(7), 621–630. https://doi.org/10.1080/2150704X.2016.1171921

    Article  Google Scholar 

  • Ramanathan, V., & Feng, Y. (2009). Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmospheric Environment., 43(1), 37–50. https://doi.org/10.1016/j.atmosenv.2008.09.063

    Article  CAS  Google Scholar 

  • Ramon, J., Lledó, L., Torralba, V., Soret, A., & Doblas-Reyes, F. J. (2019). What global reanalysis best represents near-surface winds? Quarterly Journal of the Royal Meteorological Society, 145(724), 3236–3251. https://doi.org/10.1002/qj.361

    Article  Google Scholar 

  • Saha, D., Soni, K., Mohanan, M. N., & Singh, M. (2019). Long-term trend of ventilation coefficient over Delhi and its potential impacts on air quality. Remote Sensing Applications: Society and Environment., 15, 100234. https://doi.org/10.1016/j.rsase.2019.05.003

    Article  Google Scholar 

  • Seidel, D. J., Ao, C. O., Li, K. (2010). Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. Journal of Geophysical Research: Atmospheres 115, D16113. https://doi.org/10.1029/2009jd013680

  • Sen, A., Abdelmaksoud, A. S., Nazeer Ahammed, Y., Alghamdi, M. A., Banerjee, T., Ahmad Bhat, M., Chatterjee, A., Choudhuri, A. K., Das, T., Dhir, A., Dhyani, P. P., Gadi, R., Ghosh, S., Kumar, K., Khan, A. H., Khoder, M., Maharaj Kumari, K., Kuniyal, J. C., Kumar, M., … Mandal, T. K. (2017). Variations in particulate matter over Indo-Gangetic Plains and Indo-Himalayan Range during four field campaigns in winter monsoon and summer monsoon: Role of pollution pathways. Atmospheric Environment., 154, 200–224.

    Article  CAS  Google Scholar 

  • Smith, W. L., Sr., Revercomb, H., Bingham, G., Larar, A., Huang, H., Zhou, D., Li, J., Liu, X., & Kireev, S. (2009). Technical Note: Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere. Atmospheric Chemistry and Physics, 9(15), 5563–5574. https://doi.org/10.5194/acp-9-5563-2009

    Article  CAS  Google Scholar 

  • Stull, R. B. (1988). Mean boundary layer characteristics. In R. B. Stull (Ed.), An Introduction to Boundary Layer Meteorology. Atmospheric Sciences Library. (Vol. 13). Dordrecht: Springer. https://doi.org/10.1007/978-94-009-3027-8_1

    Chapter  Google Scholar 

  • Sun, B., Reale, A., Tilley, F. H., Pettey, M. E., Nalli, N. R., & Barnet, C. D. (2017). Assessment of NUCAPS S-NPP CrIS/ATMS sounding products using reference and conventional radiosonde observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing., 10(6), 2499–2509. https://doi.org/10.1109/JSTARS.2017.2670504

    Article  Google Scholar 

  • Vittal Murty, K. P. R., Viswanadham, D. V., & Sadhuram, Y. (1980). Mixing heights and ventilation coefficients for urban centres in India. Boundary-Layer Meteorology, 19(4), 441–451. https://doi.org/10.1007/BF00122344

    Article  Google Scholar 

  • Wallace, J. M., & Hobbs, P. V. (2006). Atmospheric science: An introductory survey (pp. 67–69). Elsevier Academic Press.

    Google Scholar 

  • Wang, X. Y., & Wang, K. C. (2014). Estimation of atmospheric mixing layer height from radiosonde data. Atmospheric Measurement Techniques., 7(6), 1701–1709. https://doi.org/10.5194/amt-7-1701-2014

    Article  Google Scholar 

  • World health organization. (2016). Ambient air pollution: A global assessment of exposure and burden of disease. Geneva, World Health Organization. https://apps.who.int/iris/handle/10665/250141. Accessed 5 Jan 2021.

  • Xie, F., Wu, D. L., Ao, C. O., Mannucci, A. J., & Kursinski, E. R. (2012). Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean. Atmosheric Chemistry and Physics, 12(2), 903–918. https://doi.org/10.5194/acp-12-903-2012

    Article  CAS  Google Scholar 

  • Zhou, L., Divakarla, M., Liu, X., Layns, A., Goldberg, M. (2019). An overview of the Science performances and calibration/validation of joint polar satellite system operational products. Remote Sensing. 11(6), 698. https://doi.org/10.3390/rs11060698

Download references

Acknowledgements

The authors are thankful to all the online database science teams ((ERA5: https://cds.climate.copernicus.eu/cdsapp#!/home and NICES: https://bhuvan-app3.nrsc.gov.in/data/download/index.php) for supplying free and valuable data used in this study. We thank Director NRSC for the support and encouragement throughout this study.

Author information

Authors and Affiliations

Authors

Contributions

Hareef baba shaeb. K: Conceptualization, methodology, investigation, writing – original draft, writing – review and editing.

Sandelger Dorligjav: Data analysis, methodology, computation, and editing.

Biswadip.G: Review and editing and supervision.

Seshasai MVR: Review and editing and supervision.

Corresponding author

Correspondence to Hareef baba shaeb Kannemadugu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannemadugu, H.b.s., Dorligjav, S., Gharai, B. et al. Satellite-Based Air Pollution Potential Climatology over India. Water Air Soil Pollut 232, 365 (2021). https://doi.org/10.1007/s11270-021-05324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05324-8

Keywords

Navigation