Skip to main content

Advertisement

Log in

Melatonin: a pleiotropic hormone as a novel potent therapeutic candidate in arsenic toxicity

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Arsenic is a natural element which exists in the environment in inorganic and organic forms. In humans, the main reason for the toxicity of arsenic is its uptake via water sources. As polluted water and the problems associated with it can be found in many countries. Therefore, considering all these positive effects of melatonin, this review is aimed at melatonin supplementation therapy on arsenic toxicity which seems to be a suitable therapeutic agent to eliminate the adverse effects of arsenic.

Methods and Results

It is seen in previous studies that chronic exposure to arsenic could cause serious dys functions of organs and induce different degrees of toxicities that is one of the first hazardous materials in the classification of substances by the United States Environmental Protection Agency so leads to costly cleanup operations burdening the economy. Arsenic harmfulness degree depends on the bioavailability, chemical form, valence state, detoxification, and metabolism of human body. The oxidative stress has a major role in arsenic-induced toxicity; on the other hand, it was discovered that melatonin is a powerful scavenger for free radical and it’s an extensive-spectrum antioxidant.

Conclusion

Due to its highly lipophilic and small size properties, melatonin accesses all intracellular organs by easily passing via the cell membrane and prevents protein, DNA damage, and lipid peroxidation. In particular, melatonin, by protecting and reducing oxidative stress in mitochondria, can normalize homeostasis and mitochondrial function and ultimately prevent apoptosis and cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

AS:

Arsenic

H2O2:

Hydrogen peroxide

NO:

Nitric oxide

HO :

Hydroxyl radical’s species

O2:

Superoxide anion

(CH3)2As:

Dimethyl arsenic radical

(CH3)2Asoo:

Dimethyl arsenic peroxyl radical

OhdG:

8-Hydroxy-2′-deoxyguanosine

SCE:

Sister chromatid exchanges

SCEs:

Sister chromatid exchanges

Cas:

Chromosomal aberrations

COX-2:

Cyclooxygenase-2

MAPK:

Mitogen-activated protein kinases

IL-6:

Interleukin 6

TNF-α:

Tumor necrosis factor

ATO:

Arsenic trioxide

CAT:

Catalase

GPx:

Glutathione peroxidase

UROШ-s:

Uroporphyrinogen III synthetase

PBG-D:

Porphobilinogen deaminase

Aβ:

Amyloid-β

NMDA:

N-methyl-d-aspartate receptor

CKD:

Chronic kidney disease

COPD:

Chronic obstructive pulmonary disease

AR:

Androgen receptor

MTBS:

Mean testicular biopsy score

MSTD:

Mean seminiferous tubular diameter

VSMCs:

Vascular smooth muscle cells

MLCK:

Myosin light chain kinase

IRI:

Ischemia/reperfusion injury

GERD:

Gastroesophageal reflux disease

MMP-2:

Matrix metalloproteinase-2

GHS:

Global hepatitis summit

References

  1. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D et al (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31(2):95–107

    CAS  PubMed  Google Scholar 

  2. Xu M, Niu Q, Hu Y, Feng G, Wang H, Li S (2019) Proanthocyanidins antagonize arsenic-induced oxidative damage and promote arsenic methylation through activation of the Nrf2 signaling pathway. Oxid Med Cell Longev 2019:8549035

    Article  PubMed  PubMed Central  Google Scholar 

  3. WHO (2017) Global status report on water safety plans: a review of proactive risk assessment and risk management practices to ensure the safety of drinking-water. World Health Organization

    Google Scholar 

  4. Uygur R, Aktas C, Caglar V, Uygur E, Erdogan H, Ozen OA (2016) Protective effects of melatonin against arsenic-induced apoptosis and oxidative stress in rat testes. Toxicol Ind Health 32(5):848–859

    Article  CAS  PubMed  Google Scholar 

  5. Ali SS, Medda N, Dutta SM, Patra R, Maiti S (2020) Protection against mitochondrial oxidative-stress by flesh-extract of edible freshwater snail bellamya bengalensis prevents arsenic induced DNA and tissue damage. Anti Cancer Agents Med 20(10):1266–1273

    Article  CAS  Google Scholar 

  6. Flora S, Bhadauria S, Kannan G, Singh N (2007) Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review. J Environ Biol 28(2):333

    CAS  PubMed  Google Scholar 

  7. Yun S-M, Woo SH, Oh ST, Hong S-E, Choe T-B, Ye S-K et al (2016) Melatonin enhances arsenic trioxide-induced cell death via sustained upregulation of Redd1 expression in breast cancer cells. Mol Cell Endocrinol 422:64–73

    Article  CAS  PubMed  Google Scholar 

  8. Pal S, Pal PB, Das J, Sil PC (2011) Involvement of both intrinsic and extrinsic pathways in hepatoprotection of arjunolic acid against cadmium induced acute damage in vitro. Toxicology 283(2–3):129–139

    Article  CAS  PubMed  Google Scholar 

  9. Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebestény T et al (2011) A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 51(1):17–43

    Article  CAS  PubMed  Google Scholar 

  10. Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC et al (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71(16):2997–3025

    Article  PubMed  CAS  Google Scholar 

  11. Renzi A, DeMorrow S, Onori P, Carpino G, Mancinelli R, Meng F et al (2013) Modulation of the biliary expression of arylalkylamine N-acetyltransferase alters the autocrine proliferative responses of cholangiocytes in rats. Hepatology 57(3):1130–1141

    Article  CAS  PubMed  Google Scholar 

  12. Wu N, Meng F, Zhou T, Han Y, Kennedy L, Venter J et al (2017) Prolonged darkness reduces liver fibrosis in a mouse model of primary sclerosing cholangitis by miR-200b down-regulation. FASEB J 31(10):4305–4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amaral FGD, Andrade-Silva J, Kuwabara WM, Cipolla-Neto J (2019) New insights into the function of melatonin and its role in metabolic disturbances. Expert Rev Endocrinol Metab 14(4):293–300

    Article  CAS  PubMed  Google Scholar 

  14. Xalxo R, Keshavkant S (2019) Melatonin, glutathione and thiourea attenuates lead and acid rain-induced deleterious responses by regulating gene expression of antioxidants in Trigonella foenum graecum L.. Chemosphere 221:1–10

    Article  CAS  PubMed  Google Scholar 

  15. Mohamed EA (2015) The protective effect of melatonin vs. vitamin e in the ischemic/reperfused skeletal muscle in the adult male rat model. J Cytol Histol 3(3):1

    Google Scholar 

  16. Shaker M, Houssen M, Abo-Hashem E, Ibrahim T (2009) Comparison of vitamin E, L-carnitine and melatonin in ameliorating carbon tetrachloride and diabetes induced hepatic oxidative stress. J Physiol Biochem 65(3):225–233

    Article  CAS  PubMed  Google Scholar 

  17. Claustrat B, Leston J (2015) Melatonin: physiological effects in humans. Neurochirurgie 61(2–3):77–84

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Xi S, Xu Y, Wang F, Zheng Y, Li B et al (2013) Sodium arsenite induces cyclooxygenase-2 expression in human uroepithelial cells through MAPK pathway activation and reactive oxygen species induction. Toxicol In Vitro 27(3):1043–1048

    Article  CAS  PubMed  Google Scholar 

  19. Noman ASM, Dilruba S, Mohanto NC, Rahman L, Khatun Z, Riad W et al (2015) Arsenic-induced histological alterations in various organs of mice. J Cytol Histol 6(3):323

    PubMed  PubMed Central  Google Scholar 

  20. Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26

    Article  CAS  PubMed  Google Scholar 

  21. Farkhondeh T, Samarghandian S, Azimi-Nezhad M (2019) The role of arsenic in obesity and diabetes. J Cell Physiol 234(8):12516–12529

    Article  CAS  PubMed  Google Scholar 

  22. Zaazaa AM (2014) Protective role of the nigella sativa oil against arsenic-induced neurotoxicity in male rats. World J Pharm Res 3(2):1624–1636

    Google Scholar 

  23. Greani S, Lourkisti R, Berti L, Marchand B, Giannettini J, Santini J et al (2017) Effect of chronic arsenic exposure under environmental conditions on bioaccumulation, oxidative stress, and antioxidant enzymatic defenses in wild trout Salmo trutta (Pisces, Teleostei). Ecotoxicology 26(7):930–941

    Article  CAS  PubMed  Google Scholar 

  24. Bau D-T, Wang T-S, Chung C-H, Wang AS, Wang AS, Jan K-Y (2002) Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesions induced by arsenite. Environ Health Perspect 110(suppl 5):753–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu C-Y, Wong C-S, Chung C-J, Wu M-Y, Huang Y-L, Ao P-L et al (2019) The association between plasma selenium and chronic kidney disease related to lead, cadmium and arsenic exposure in a Taiwanese population. J Hazard Mater 375:224–232

    Article  CAS  PubMed  Google Scholar 

  26. Mishra D, Flora S (2008) Differential oxidative stress and DNA damage in rat brain regions and blood following chronic arsenic exposure. Toxicol Ind Health 24(4):247–256

    Article  CAS  PubMed  Google Scholar 

  27. He Y, Zhang R, Chen J, Tan J, Wang M, Wu X (2020) The ability of arsenic metabolism affected the expression of lncRNA PANDAR, DNA damage, or DNA methylation in peripheral blood lymphocytes of laborers. Hum Exp Toxicol 39(5):605–613

    Article  CAS  PubMed  Google Scholar 

  28. Roy JS, Chatterjee D, Das N, Giri AK (2018) Substantial evidences indicate that inorganic arsenic is a genotoxic carcinogen: a review. Toxicological research 34(4):311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vijayakaran K, Kannan K, Kesavan M, Suresh S, Sankar P, Tandan SK et al (2014) Arsenic reduces the antipyretic activity of paracetamol in rats: modulation of brain COX-2 activity and CB1 receptor expression. Environ Toxicol Pharmacol 37(1):438–447

    Article  CAS  PubMed  Google Scholar 

  30. Gong X, Ivanov VN, Hei TK (2016) 2, 3, 5, 6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-κB, AP-1 and MAPK pathways in human proximal tubular cells. Arch Toxicol 90(9):2187–2200

    Article  CAS  PubMed  Google Scholar 

  31. Escudero-Lourdes C, Medeiros M, Cárdenas-González M, Wnek S, Gandolfi J (2010) Low level exposure to monomethyl arsonous acid-induced the over-production of inflammation-related cytokines and the activation of cell signals associated with tumor progression in a urothelial cell model. Toxicol Appl Pharmacol 244(2):162–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wadgaonkar P, Chen F (2021) Connections between endoplasmic reticulum stress-associated unfolded protein response, mitochondria, and autophagy in arsenic-induced carcinogenesis. Seminars in cancer biology. Elsevier

    Google Scholar 

  33. Kim Y-J, Chung J-Y, Lee SG, Kim JY, Park J-E, Kim WR et al (2011) Arsenic trioxide-induced apoptosis in TM4 Sertoli cells: the potential involvement of p21 expression and p53 phosphorylation. Toxicology 285(3):142–151

    Article  CAS  PubMed  Google Scholar 

  34. Das J, Ghosh J, Manna P, Sinha M, Sil PC (2009) Taurine protects rat testes against NaAsO2-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways. Toxicol Lett 187(3):201–210

    Article  CAS  PubMed  Google Scholar 

  35. Flora S, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian J Med Res 128(4):501

    CAS  PubMed  Google Scholar 

  36. Sayyadi M, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Abolghasemi H, Anoushirvani AA, Bashash D (2020) c-Myc inhibition using 10058–F4 increased the sensitivity of acute promyelocytic leukemia cells to arsenic trioxide via blunting PI3K/NF-κB axis. Arch Med Res 51(7):636–644

    Article  CAS  PubMed  Google Scholar 

  37. Alarifi S, Ali D, Alkahtani S, Siddiqui MA, Ali BA (2013) Arsenic trioxide-mediated oxidative stress and genotoxicity in human hepatocellular carcinoma cells. Onco Targets Ther 6:75

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kasukabe T, Okabe-Kado J, Haranosono Y, Kato N, Honma Y (2013) Inhibition of rapamycin-induced Akt phosphorylation by cotylenin A correlates with their synergistic growth inhibition of cancer cells. Int J Oncol 42(2):767–775

    Article  CAS  PubMed  Google Scholar 

  39. Chen C, Jiang X, Hu Y, Zhang Z (2013) The protective role of resveratrol in the sodium arsenite-induced oxidative damage via modulation of intracellular GSH homeostasis. Biol Trace Elem Res 155(1):119–131

    Article  CAS  PubMed  Google Scholar 

  40. Söderquist F, Hellström PM, Cunningham JL (2015) Human gastroenteropancreatic expression of melatonin and its receptors MT1 and MT2. PLoS ONE 10(3):e0120195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Valavanidis A, Vlachogianni T, Fiotakis K (2009) Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health 6(2):445–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61(3):253–278

    Article  CAS  PubMed  Google Scholar 

  43. Farouk S, Al-Amri SM (2019) Exogenous melatonin-mediated modulation of arsenic tolerance with improved accretion of secondary metabolite production, activating antioxidant capacity and improved chloroplast ultrastructure in rosemary herb. Ecotoxicol Environ Saf 180:333–347

    Article  CAS  PubMed  Google Scholar 

  44. Kitchin KT, Conolly R (2009) Arsenic-induced carcinogenesis oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment. Chem Res Toxicol 23(2):327–335

    Article  CAS  Google Scholar 

  45. Zhang Y, Kim MS, Jia B, Yan J, Zuniga-Hertz JP, Han C et al (2017) Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 548(7665):52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H (2017) Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 8(14):23905

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hirano S, Cui X, Li S, Kanno S, Kobayashi Y, Hayakawa T et al (2003) Difference in uptake and toxicity of trivalent and pentavalent inorganic arsenic in rat heart microvessel endothelial cells. Arch Toxicol 77(6):305–312

    Article  CAS  PubMed  Google Scholar 

  48. Vahter M, Concha G (2001) Role of metabolism in arsenic toxicity. Pharmacol Toxicol Mini Rev 89(1):1–5

    Article  CAS  Google Scholar 

  49. Aposhian HV, Zakharyan RA, Avram MD, Sampayo-Reyes A, Wollenberg ML (2004) A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicol Appl Pharmacol 198(3):327–335

    Article  PubMed  CAS  Google Scholar 

  50. Goering PL, Aposhian HV, Mass MJ, Cebrián M, Beck BD, Waalkes MP (1999) The enigma of arsenic carcinogenesis: role of metabolism. Toxicol Sci Off J Soc Toxicol 49(1):5–14

    Article  CAS  Google Scholar 

  51. Hacışevki A, Baba B (2018) An overview of melatonin as an antioxidant molecule: a biochemical approach. Melatonin Mol Biol Clin Pharm Approach 2018:59–85

    Google Scholar 

  52. Galano A, Tan D-X, Reiter RJ (2018) Melatonin: a versatile protector against oxidative DNA damage. Molecules 23(3):530

    Article  PubMed Central  CAS  Google Scholar 

  53. Catala A (2007) The ability of melatonin to counteract lipid peroxidation in biological membranes. Curr Mol Med 7(7):638–649

    Article  CAS  PubMed  Google Scholar 

  54. Tomás-Zapico C, Coto-Montes A (2005) A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res 39(2):99–104

    Article  PubMed  CAS  Google Scholar 

  55. Yin J, Liu YH, Xu YF, Zhang YJ, Chen JG, Shu BH et al (2006) Melatonin arrests peroxynitrite-induced tau hyperphosphorylation and the overactivation of protein kinases in rat brain. J Pineal Res 41(2):124–129

    Article  CAS  PubMed  Google Scholar 

  56. Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A et al (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59(4):403–419

    Article  CAS  PubMed  Google Scholar 

  57. Xu S, Pi H, Zhang L, Zhang N, Li Y, Zhang H et al (2016) Melatonin prevents abnormal mitochondrial dynamics resulting from the neurotoxicity of cadmium by blocking calcium-dependent translocation of Drp1 to the mitochondria. J Pineal Res 60(3):291–302

    Article  CAS  PubMed  Google Scholar 

  58. Li M, Pi H, Yang Z, Reiter RJ, Xu S, Chen X et al (2016) Melatonin antagonizes cadmium-induced neurotoxicity by activating the transcription factor EB-dependent autophagy–lysosome machinery in mouse neuroblastoma cells. J Pineal Res 61(3):353–369

    Article  CAS  PubMed  Google Scholar 

  59. García JJ, López-Pingarrón L, Almeida-Souza P, Tres A, Escudero P, García-Gil FA et al (2014) Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J Pineal Res 56(3):225–237

    Article  PubMed  CAS  Google Scholar 

  60. Prado NJ, Ferder L, Manucha W, Diez ER (2018) Anti-inflammatory effects of melatonin in obesity and hypertension. Curr Hypertens Rep 20(5):1–12

    Article  CAS  Google Scholar 

  61. Romero A, Ramos E, de Los RC, Egea J, Del Pino J, Reiter RJ (2014) A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res 56(4):343–370

    Article  CAS  PubMed  Google Scholar 

  62. Majidinia M, Sadeghpour A, Mehrzadi S, Reiter RJ, Khatami N, Yousefi B (2017) Melatonin: a pleiotropic molecule that modulates DNA damage response and repair pathways. J Pineal Res 63(1):e012416

    Article  CAS  Google Scholar 

  63. Hu Y, Li J, Lou B, Wu R, Wang G, Lu C et al (2020) The role of reactive oxygen species in arsenic toxicity. Biomolecules 10(2):240

    Article  CAS  PubMed Central  Google Scholar 

  64. Pant HH, Rao MV (2010) Evaluation of in vitro anti-genotoxic potential of melatonin against arsenic and fluoride in human blood cultures. Ecotoxicol Environ Saf 73(6):1333–1337

    Article  CAS  PubMed  Google Scholar 

  65. Carrascal L, Nunez-Abades P, Ayala A, Cano M (2018) Role of melatonin in the inflammatory process and its therapeutic potential. Curr Pharm Des 24(14):1563–1588

    Article  CAS  PubMed  Google Scholar 

  66. Jain A, Mehta VK, Chittora R, Mahdi A, Bhatnagar M (2015) Melatonin ameliorates fluoride induced neurotoxicity in young rats: an in vivo evidence. Asian J Pharm Clin Res 8(4):164–167

    CAS  Google Scholar 

  67. Xia MZ, Liang YL, Wang H, Chen X, Huang YY, Zhang ZH et al (2012) Melatonin modulates TLR4-mediated inflammatory genes through MyD88-and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264. 7 cells. J Pineal Res 53(4):325–334

    Article  CAS  PubMed  Google Scholar 

  68. Liu X, Piao F, Li Y (2013) Protective effect of taurine on the decreased biogenic amine neurotransmitter levels in the brain of mice exposed to arsenic. Taurine 8:277–287

    CAS  Google Scholar 

  69. Bernardini L, Barbosa E, Charão MF, Goethel G, Muller D, Bau C et al (2020) Oxidative damage, inflammation, genotoxic effect, and global DNA methylation caused by inhalation of formaldehyde and the purpose of melatonin. Toxicol Res 9(6):778–789

    Article  Google Scholar 

  70. Lowes D, Almawash A, Webster N, Reid V, Galley H (2011) Melatonin and structurally similar compounds have differing effects on inflammation and mitochondrial function in endothelial cells under conditions mimicking sepsis. Br J Anaesth 107(2):193–201

    Article  CAS  PubMed  Google Scholar 

  71. Hajam YA, Rai S (2019) Melatonin and insulin modulates the cellular biochemistry, histoarchitecture and receptor expression during hepatic injury in diabetic rats. Life Sci 239:117046

    Article  CAS  PubMed  Google Scholar 

  72. Bharti VK, Srivastava R, Sharma B, Malik J (2012) Buffalo (Bubalus bubalis) epiphyseal proteins counteract arsenic-induced oxidative stress in brain, heart, and liver of female rats. Biol Trace Elem Res 146(2):224–229

    Article  CAS  PubMed  Google Scholar 

  73. Song J, Kang SM, Lee KM, Lee JE (2015) The protective effect of melatonin on neural stem cell against LPS-induced inflammation. BioMed Res Inter. https://doi.org/10.1155/2015/854359

    Article  Google Scholar 

  74. Abdul KSM, Jayasinghe SS, Chandana EP, Jayasumana C, De Silva PMC (2015) Arsenic and human health effects: a review. Environ Toxicol Pharmacol 40(3):828–846

    Article  PubMed  CAS  Google Scholar 

  75. Valles S, Hernández-Sánchez J, Dipp VR, Huerta-González D, Olivares-Bañuelos TN, González-Fraga J et al (2020) Exposure to low doses of inorganic arsenic induces transgenerational changes on behavioral and epigenetic markers in zebrafish (Danio rerio). Toxicol Appl Pharmacol 396:115002

    Article  CAS  PubMed  Google Scholar 

  76. Firdaus F, Zafeer MF, Ahmad M, Afzal M (2018) Anxiolytic and anti-inflammatory role of thymoquinone in arsenic-induced hippocampal toxicity in Wistar rats. Heliyon 4(6):e00650

    Article  PubMed  PubMed Central  Google Scholar 

  77. Olson KR, Anderson IB, Benowitz NL, Blanc PD, Clark RF, Kearney TE et al (2007) Poisoning and drug overdose. McGraw-Hill, NewYork

    Google Scholar 

  78. Zhang Y, Wei Z, Liu W, Wang J, He X, Huang H et al (2017) Melatonin protects against arsenic trioxide-induced liver injury by the upregulation of Nrf2 expression through the activation of PI3K/AKT pathway. Oncotarget 8(3):3773

    Article  PubMed  Google Scholar 

  79. Dwivedi N, Mehta A, Yadav A, Binukumar B, Gill KD, Flora SJ (2011) MiADMSA reverses impaired mitochondrial energy metabolism and neuronal apoptotic cell death after arsenic exposure in rats. Toxicol Appl Pharmacol 256(3):241–248

    Article  CAS  PubMed  Google Scholar 

  80. Kim KB, Bedikian AY, Camacho LH, Papadopoulos NE, McCullough C (2005) A phase II trial of arsenic trioxide in patients with metastatic melanoma. Cancer 104(8):1687–1692

    Article  CAS  PubMed  Google Scholar 

  81. Rios R, Zarazúa S, Santoyo M, Sepúlveda-Saavedra J, Romero-Díaz V, Jimenez V et al (2009) Decreased nitric oxide markers and morphological changes in the brain of arsenic-exposed rats. Toxicology 261(1–2):68–75

    Article  CAS  PubMed  Google Scholar 

  82. Samad N, Rao T, Rehman MH, Bhatti SA, Imran I (2021) Inhibitory effects of selenium on arsenic-induced anxiety-/depression-like behavior and memory impairment. Biol Trace Element Res. https://doi.org/10.1007/s12011-021-02679-1

    Article  Google Scholar 

  83. Vahidnia A, Romijn F, Van der Voet G, De Wolff F (2008) Arsenic-induced neurotoxicity in relation to toxicokinetics: effects on sciatic nerve proteins. Chem Biol Interact 176(2–3):188–195

    Article  CAS  PubMed  Google Scholar 

  84. Liu S, Piao F, Sun X, Bai L, Peng Y, Zhong Y et al (2012) Arsenic-induced inhibition of hippocampal neurogenesis and its reversibility. Neurotoxicology 33(5):1033–1039

    Article  CAS  PubMed  Google Scholar 

  85. Singh AP, Goel RK, Kaur T (2011) Mechanisms pertaining to arsenic toxicity. Toxicol Int 18(2):87

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chandravanshi LP, Gupta R, Shukla RK (2019) Arsenic-induced neurotoxicity by dysfunctioning cholinergic and dopaminergic system in brain of developing rats. Biol Trace Elem Res 189(1):118–133

    Article  CAS  PubMed  Google Scholar 

  87. Krüger K, Straub H, Hirner AV, Hippler J, Binding N, Muβhoff U (2009) Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats. Toxicol Appl Pharmacol 236(1):115–123

    Article  PubMed  CAS  Google Scholar 

  88. Felix K, Manna SK, Wise K, Barr J, Ramesh GT (2005) Low levels of arsenite activates nuclear factor-κB and activator protein-1 in immortalized mesencephalic cells. J Biochem Mol Toxicol 19(2):67–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Flora SJ (2011) Arsenic-induced oxidative stress and its reversibility. Free Radical Biol Med 51(2):257–281

    Article  CAS  Google Scholar 

  90. Durappanavar PN, Nadoor P, Waghe P, Pavithra B, Jayaramu G (2019) Melatonin ameliorates neuropharmacological and neurobiochemical alterations induced by subchronic exposure to arsenic in Wistar rats. Biol Trace Elem Res 190(1):124–139

    Article  CAS  PubMed  Google Scholar 

  91. Kalonia H, Kumar A (2007) Protective effect of melatonin on certain behavioral and biochemical alterations induced by sleep-deprivation in mice. Indian J Pharmacol 39(1):48

    Article  CAS  Google Scholar 

  92. Fan SF, Chao PL, Lin AMY (2010) Arsenite induces oxidative injury in rat brain: synergistic effect of iron. Ann N Y Acad Sci 1199(1):27–35

    Article  CAS  PubMed  Google Scholar 

  93. Raju V, Bell JJ, Merlin N, Dharan SS (2017) Anxiety disorders-a review. Asian J Pharm Res 7(4):217

    Article  Google Scholar 

  94. Rao MV, Purohit AR (2011) Neuroprotection by melatonin on mercury induced toxicity in the rat brain. Pharmacol Pharm 2(04):375

    Article  CAS  Google Scholar 

  95. Huang C-C, Lai C-J, Tsai M-H, Wu Y-C, Chen K-T, Jou M-J et al (2015) Effects of melatonin on the nitric oxide system and protein nitration in the hypobaric hypoxic rat hippocampus. BMC Neurosci 16(1):61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Deng Y, Jiao C, Mi C, Xu B, Li Y, Wang F et al (2015) Melatonin inhibits manganese-induced motor dysfunction and neuronal loss in mice: involvement of oxidative stress and dopaminergic neurodegeneration. Mol Neurobiol 51(1):68–88

    Article  CAS  PubMed  Google Scholar 

  97. Meliker JR, Wahl RL, Cameron LL, Nriagu JO (2007) Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: a standardized mortality ratio analysis. Environ Health 6(1):4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Kayankarnna W, Tangvarasittichai O, Tangvarasittichai S (2016) Association between elevated arsenic exposure with chronic kidney disease and oxidative stress in subjects of the contamination area. Int J Toxicol Pharm Res 8(3):173–178

    Google Scholar 

  99. Dutta S, Saha S, Mahalanobish S, Sadhukhan P, Sil PC (2018) Melatonin attenuates arsenic induced nephropathy via the regulation of oxidative stress and inflammatory signaling cascades in mice. Food Chem Toxicol 118:303–316

    Article  CAS  PubMed  Google Scholar 

  100. Yu M, Xue J, Li Y, Zhang W, Ma D, Liu L et al (2013) Resveratrol protects against arsenic trioxide-induced nephrotoxicity by facilitating arsenic metabolism and decreasing oxidative stress. Arch Toxicol 87(6):1025–1035

    Article  CAS  PubMed  Google Scholar 

  101. Mahalanobish S, Saha S, Dutta S, Sil PC (2019) Mangiferin alleviates arsenic induced oxidative lung injury via upregulation of the Nrf2-HO1 axis. Food Chem Toxicol 126:41–55

    Article  CAS  PubMed  Google Scholar 

  102. Singh SS, Deb A, Sutradhar S (2019) Effect of melatonin on arsenic-induced oxidative stress and expression of MT1 and MT2 receptors in the kidney of laboratory mice. Biol Rhythm Res 51:1216–1230

    Article  CAS  Google Scholar 

  103. Sabir S, Akash MSH, Fiayyaz F, Saleem U, Mehmood MH, Rehman K (2019) Role of cadmium and arsenic as endocrine disruptors in the metabolism of carbohydrates: inserting the association into perspectives. Biomed Pharmacother 114:108802

    Article  CAS  PubMed  Google Scholar 

  104. Cifuentes F, Bravo J, Norambuena M, Stegen S, Ayavire A, Palacios J (2009) Chronic exposure to arsenic in tap water reduces acetylcholine-induced relaxation in the aorta and increases oxidative stress in female rats. Int J Toxicol 28(6):534–541

    Article  CAS  PubMed  Google Scholar 

  105. Huang C-F, Yang C-Y, Chan D-C, Wang C-C, Huang K-H, Wu C-C et al (2015) Arsenic exposure and glucose intolerance/insulin resistance in estrogen-deficient female mice. Environ Health Perspect 123(11):1138–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Das S, Santra A, Lahiri S, Mazumder DG (2005) Implications of oxidative stress and hepatic cytokine (TNF-α and IL-6) response in the pathogenesis of hepatic collagenesis in chronic arsenic toxicity. Toxicol Appl Pharmacol 204(1):18–26

    Article  CAS  PubMed  Google Scholar 

  107. Tao Y, Qiu T, Yao X, Jiang L, Wang N, Jia X et al (2020) Autophagic-CTSB-inflammasome axis modulates hepatic stellate cells activation in arsenic-induced liver fibrosis. Chemosphere 242:124959

    Article  CAS  PubMed  Google Scholar 

  108. Kokilavani V, Devi MA, Sivarajan K, Panneerselvam C (2005) Combined efficacies of dl-α-lipoic acid and meso 2, 3 dimercaptosuccinic acid against arsenic induced toxicity in antioxidant systems of rats. Toxicol Lett 160(1):1–7

    Article  CAS  PubMed  Google Scholar 

  109. Pal S, Chatterjee AK (2006) Possible beneficial effects of melatonin supplementation on arsenic-induced oxidative stress in Wistar rats. Drug Chem Toxicol 29(4):423–433

    Article  CAS  PubMed  Google Scholar 

  110. Mortezaee K (2018) Human hepatocellular carcinoma: protection by melatonin. J Cell Physiol 233(10):6486–6508

    Article  CAS  PubMed  Google Scholar 

  111. Hemmati AA, Alboghobeish S, Ahangarpour A (2018) Chronic exposure to high fat diet exacerbates arsenic-induced lung damages in male mice: possible role for oxidative stress. Monaldi Arch Chest Dis, 88(1)

  112. Shin IS, Shin NR, Park JW, Jeon CM, Hong JM, Kwon OK et al (2015) Melatonin attenuates neutrophil inflammation and mucus secretion in cigarette smoke-induced chronic obstructive pulmonary diseases via the suppression of Erk-Sp1 signaling. J Pineal Res 58(1):50–60

    Article  CAS  PubMed  Google Scholar 

  113. Pourgholamhossein F, Rasooli R, Pournamdari M, Pourgholi L, Samareh-Fekri M, Ghazi-Khansari M et al (2018) Pirfenidone protects against paraquat-induced lung injury and fibrosis in mice by modulation of inflammation, oxidative stress, and gene expression. Food Chem Toxicol 112:39–46

    Article  CAS  PubMed  Google Scholar 

  114. Ahmad I, Akthar KM, Hussain T (2008) Arsenic induced microscopic changes in rat testis. Prof Med J 15(02):287–291

    Google Scholar 

  115. Darbandi M, Darbandi S, Agarwal A, Sengupta P, Durairajanayagam D, Henkel R et al (2018) Reactive oxygen species and male reproductive hormones. Reprod Biol Endocrinol 16(1):1–14

    Article  CAS  Google Scholar 

  116. Bustos-Obregón E, Poblete D, Catriao R, Fernandes FH (2013) Protective role of melatonin in mouse spermatogenesis induced by sodium arsenite. Inter J Morphol 2013:849–856

    Article  Google Scholar 

  117. Ferreira M, Matos RC, Oliveira H, Nunes B, Pereira MDL (2012) Impairment of mice spermatogenesis by sodium arsenite. Human Exp Toxicol 31(3):290–302

    Article  CAS  Google Scholar 

  118. da Silva RF, Borges CDS, de Almeida LC, Cagnon VHA, de Grava Kempinas W (2017) Arsenic trioxide exposure impairs testicular morphology in adult male mice and consequent fetus viability. J Toxicol Environ Health Part A 80(19–21):1166–1179

    Article  CAS  Google Scholar 

  119. Orta Yilmaz B, Yildizbayrak N, Erkan M (2020) Sodium arsenite-induced detriment of cell function in Leydig and Sertoli cells: the potential relation of oxidative damage and antioxidant defense system. Drug Chem Toxicol 43(5):479–487

    Article  CAS  PubMed  Google Scholar 

  120. Tamura H, Takasaki A, Taketani T, Tanabe M, Lee L, Tamura I et al (2014) Melatonin and female reproduction. J Obstet Gynaecol Res 40(1):1–11

    Article  CAS  PubMed  Google Scholar 

  121. Reiter RJ, Tan D-X, Manchester LC, Paredes SD, Mayo JC, Sainz RM (2009) Melatonin and reproduction revisited. Biol Reprod 81(3):445–456

    Article  CAS  PubMed  Google Scholar 

  122. Cipolla-Neto J, Amaral FG, Soares-Jr JM, Gallo CC, Furtado A, Cavaco JE et al (2021) The crosstalk between melatonin and sex steroid hormones. Neuroendocrinology. https://doi.org/10.1159/000516148

    Article  PubMed  Google Scholar 

  123. Zhai M, Li B, Duan W, Jing L, Zhang B, Zhang M et al (2017) Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT 3-dependent regulation of oxidative stress and apoptosis. J Pineal Res 63(2):e12419

    Article  CAS  Google Scholar 

  124. Ferreira CS, Carvalho KC, Maganhin CC, Paiotti AP, Oshima CT, Simões MJ et al (2016) Does melatonin influence the apoptosis in rat uterus of animals exposed to continuous light? Apoptosis 21(2):155–162

    Article  CAS  PubMed  Google Scholar 

  125. Stea F, Bianchi F, Cori L, Sicari R (2014) Cardiovascular effects of arsenic: clinical and epidemiological findings. Environ Sci Pollut Res 21(1):244–251

    Article  CAS  Google Scholar 

  126. Binu P, Gifty K, Vineetha R, Abhilash S, Arathi P, Nair RH (2018) Eugenol, a plant-derived phenolic nutraceutical, protects thiol (SH) group in myocardium from ROS-mediated oxidation under chemotherapeutic stress induced by arsenic trioxide–a in vivo model study. Drug Chem Toxicol 41(3):352–357

    Article  CAS  PubMed  Google Scholar 

  127. Lee P-C, Ho I-C, Lee T-C (2005) Oxidative stress mediates sodium arsenite-induced expression of heme oxygenase-1, monocyte chemoattractant protein-1, and interleukin-6 in vascular smooth muscle cells. Toxicol Sci 85(1):541–550

    Article  CAS  PubMed  Google Scholar 

  128. Pysher MD, Chen QM, Vaillancourt RR (2008) Arsenic alters vascular smooth muscle cell focal adhesion complexes leading to activation of FAK–src mediated pathways. Toxicol Appl Pharmacol 231(2):135–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Balakumar P, Kaur J (2009) Arsenic exposure and cardiovascular disorders: an overview. Cardiovasc Toxicol 9(4):169–176

    Article  CAS  PubMed  Google Scholar 

  130. States JC, Srivastava S, Chen Y, Barchowsky A (2008) Arsenic and cardiovascular disease. Toxicol Sci 107(2):312–323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Vineetha VP, Raghu KG (2019) An overview on arsenic trioxide-induced cardiotoxicity. Cardiovasc Toxicol 19(2):105–119

    Article  CAS  PubMed  Google Scholar 

  132. Veenema R, Casin KM, Sinha P, Kabir R, Mackowski N, Taube N et al (2019) Signaling and stress response: inorganic arsenic exposure induces sex-disparate effects and exacerbates ischemia-reperfusion injury in the female heart. Am J Physiol Heart Circ Physiol 316(5):H1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ma Z, Xin Z, Di W, Yan X, Li X, Reiter RJ et al (2017) Melatonin and mitochondrial function during ischemia/reperfusion injury. Cell Mol Life Sci 74(21):3989–3998

    Article  CAS  PubMed  Google Scholar 

  134. Sun Y, Tokar EJ, Waalkes MP (2012) Overabundance of putative cancer stem cells in human skin keratinocyte cells malignantly transformed by arsenic. Toxicol Sci 125(1):20–29

    Article  CAS  PubMed  Google Scholar 

  135. Zeng Q, Zhang A (2020) Assessing potential mechanisms of arsenic-induced skin lesions and cancers: human and in vitro evidence. Environ Pollut 260:113919

    Article  CAS  PubMed  Google Scholar 

  136. Pathania YS (2020) Mottled pigmentation, palmar keratosis and chronic arsenic poisoning. QJM Inter J Med 114:265–266

    Article  Google Scholar 

  137. Raman SKVRK, Bhowmick ATAKS, Bimal SKMSS, Mohanty P (2020) Clinico-epidemiological study of arsenicosis in arsenic endemic areas of West Bengal, India

  138. Bjørklund G, Oliinyk P, Lysiuk R, Rahaman MS, Antonyak H, Lozynska I et al (2020) Arsenic intoxication: general aspects and chelating agents. Arch Toxicol 94:1879–1897

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  139. Yu H, Liao W, Chai C (2006) Arsenic carcinogenesis in the skin. J Biomed Sci 13(5):657–666

    Article  CAS  PubMed  Google Scholar 

  140. Tsai T-L, Kuo C-C, Hsu L-I, Tsai S-F, Chiou H-Y, Chen C-J et al (2021) Association between arsenic exposure, DNA damage, and urological cancers incidence: a long-term follow-up study of residents in an arseniasis endemic area of northeastern Taiwan. Chemosphere 266:129094

    Article  CAS  PubMed  Google Scholar 

  141. Mehrandish R, Rahimian A, Shahriary A (2019) Heavy metals detoxification: a review of herbal compounds for chelation therapy in heavy metals toxicity. J Herbmed Pharmacol 8(2):69–77

    Article  CAS  Google Scholar 

  142. Bhattacharjee B, Pal PK, Ghosh AK, Mishra S, Chattopadhyay A, Bandyopadhyay D (2019) Aqueous bark extract of Terminalia arjuna protects against cadmium-induced hepatic and cardiac injuries in male Wistar rats through antioxidative mechanisms. Food Chem Toxicol 124:249–264

    Article  CAS  PubMed  Google Scholar 

  143. Dorier M, Béal D, Marie-Desvergne C, Dubosson M, Barreau F, Houdeau E et al (2017) Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress. Nanotoxicology 11(6):751–761

    CAS  PubMed  Google Scholar 

  144. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94(2):329–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Contreras-Zentella ML, Olguín-Martínez M, Sánchez-Sevilla L, Hernández-Muñoz R (2017) Gastric mucosal injury and oxidative stress. Gastrointestinal Tissue. Elsevier, Netherlands, pp 65–79

    Google Scholar 

  146. Mitra E, Bhattacharjee B, Pal PK, Ghosh AK, Mishra S, Chattopadhyay A et al (2019) Melatonin protects against cadmium-induced oxidative damage in different tissues of rat: a mechanistic insight. Melatonin Res 2(2):1–21

    Article  Google Scholar 

  147. Pal PK, Sarkar S, Chattopadhyay A, Tan DX, Bandyopadhyay D (2019) Enterochromaffin cells as the source of melatonin: key findings and functional relevance in mammals. Melatonin Res 2(4):61–82

    Article  Google Scholar 

  148. Pal PK, Bhattacharjee B, Ghosh AK, Chattopadhyay A, Bandyopadhyay D (2018) Adrenaline induced disruption of endogenous melatoninergic system, antioxidant and inflammatory responses in the gastrointestinal tissues of male Wistar rat: an in vitro study. Melatonin Res 1(1):109–131

    Article  Google Scholar 

  149. Konturek PC, Konturek SJ, Burnat G, Brzozowski T, Brzozowska I, Reiter RJ (2008) Dynamic physiological and molecular changes in gastric ulcer healing achieved by melatonin and its precursor L-tryptophan in rats. J Pineal Res 45(2):180–190

    Article  CAS  PubMed  Google Scholar 

  150. Carrillo-Vico A, Lardone PJ, Álvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM (2013) Melatonin: buffering the immune system. Int J Mol Sci 14(4):8638–8683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Trivedi P, Jena G (2013) Melatonin reduces ulcerative colitis-associated local and systemic damage in mice: investigation on possible mechanisms. Dig Dis Sci 58(12):3460–3474

    Article  CAS  PubMed  Google Scholar 

  152. Ma N, Zhang J, Reiter RJ, Ma X (2020) Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: a therapeutic target to reduce intestinal inflammation. Med Res Rev 40(2):606–632

    Article  CAS  PubMed  Google Scholar 

  153. Gil-Martín E, Egea J, Reiter RJ, Romero A (2019) The emergence of melatonin in oncology: focus on colorectal cancer. Med Res Rev 39(6):2239–2285

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The abstract of this article is submitted to the Third National Conference on Biotechnology Innovation and Technology, Iranian Chemistry (Abstract code: BC031576159).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maryam Majidinia or Shirin Babri.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahzade, N., Majidinia, M. & Babri, S. Melatonin: a pleiotropic hormone as a novel potent therapeutic candidate in arsenic toxicity. Mol Biol Rep 48, 6603–6618 (2021). https://doi.org/10.1007/s11033-021-06669-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06669-3

Keywords

Navigation