Skip to main content
Log in

Shank3 Deficiency is Associated With Altered Profile of Neurotransmission Markers in Pups and Adult Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alterations in the balance between excitation and inhibition, especially in the brain’s critical developmental periods, are considered an integral part of the pathophysiology of autism. However, the precise mechanisms have not yet been established. SH3 and multiple Ankyrin repeat domains 3 (Shank3) deficient mice represent a well-established transgenic model of a neurodevelopmental disorder with autistic symptomatology. In this study, we characterize the consequences of Shank3 deficiency according to (1) expression of specific markers of different neuronal populations in pups and adult mice and (2) social behaviour and anxiety in adult mice. Our research found enhanced expression of serotonin transporter and choline acetyltransferase in the hippocampus and hypothalamus in Shank3-deficient pups. We demonstrated marked brain region differences in expression of excitatory glutamatergic markers in pups and adult Shank3 deficient mice. We also observed reduced expression of inhibitory GABAergic markers and GABA receptor subunits in several brain areas in both pups and adult Shank3 deficient mice. Further analysis of dopaminergic brain areas (nucleus accumbens, ventral tegmental area) revealed lower expression levels of GABAergic markers in adult Shank3 deficient mice. Adult Shank3 deficient mice exhibited excessive repetitive behaviour, a higher level of anxiety, and lower locomotor activity. Our data support the theory of an imbalance between excitatory and inhibitory neurotransmission in conditions of abnormal SHANK3 protein. We therefore suggest that autism-like conditions are accompanied by reduced expression of GABAergic markers in the brain during early development as well as in the adult age, which could be associated with long-lasting behavioural abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sun X, Allison C, Auyeung B, Zhang Z, Matthews FE, Baron-Cohen S, Brayne C (2015) Validation of existing diagnosis of autism in mainland China using standardised diagnostic instruments. Autism 19(8):1010–1017. doi:https://doi.org/10.1177/1362361314556785

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sengupta P (2013) The laboratory rat: relating its age with human’s. Int J Prev Med 4(6):624–630

    PubMed  PubMed Central  Google Scholar 

  3. Heavner WE, Smith SEP (2020) Resolving the synaptic versus developmental dichotomy of autism risk genes. Trends Neurosci 43(4):227–241. https://doi.org/10.1016/j.tins.2020.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morton RA, Yanagawa Y, Valenzuela CF (2016) Electrophysiological assessment of serotonin and GABA neuron function in the dorsal raphe during the third trimester equivalent developmental period in mice. eNeuro. https://doi.org/10.1523/ENEURO.0079-15.2015

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tuncdemir SN, Wamsley B, Stam FJ, Osakada F, Goulding M, Callaway EM, Rudy B, Fishell G (2016) Early somatostatin interneuron connectivity mediates the maturation of deep layer cortical circuits. Neuron 89(3):521–535. https://doi.org/10.1016/j.neuron.2015.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zander JF, Münster-Wandowski A, Brunk I, Pahner I, Gómez-Lira G, Heinemann U, Gutiérrez R, Laube G, Ahnert-Hilger G (2010) Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses. J Neurosci 30(22):7634–7645. doi:https://doi.org/10.1523/JNEUROSCI.0141-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nelson SB, Valakh V (2015) Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87(4):684–698. https://doi.org/10.1016/j.neuron.2015.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bruining H, Hardstone R, Juarez-Martinez EL, Sprengers J, Avramiea AE, Simpraga S, Houtman SJ, Poil SS, Dallares E, Palva S, Oranje B, Matias Palva J, Mansvelder HD, Linkenkaer-Hansen K (2020) Measurement of excitation-inhibition ratio in autism spectrum disorder using critical brain dynamics. Sci Rep 10(1):9195. doi:https://doi.org/10.1038/s41598-020-65500-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burrows EL, Koyama L, May C, Hill-Yardin EL, Hannan AJ (2020) Environmental enrichment modulates affiliative and aggressive social behaviour in the neuroligin-3 R451C mouse model of autism spectrum disorder. Pharmacol Biochem Behav 195:172955. https://doi.org/10.1016/j.pbb.2020.172955

    Article  CAS  PubMed  Google Scholar 

  10. Gąssowska-Dobrowolska M, Cieślik M, Czapski GA, Jęśko H, Frontczak-Baniewicz M, Gewartowska M, Dominiak A, Polowy R, Filipkowski RK, Babiec L, Adamczyk A (2020) Prenatal exposure to valproic acid affects microglia and synaptic ultrastructure in a brain-region-specific manner in young-adult male rats: relevance to autism spectrum disorders. Int J Mol Sci 21(10):3576. https://doi.org/10.3390/ijms21103576

    Article  CAS  PubMed Central  Google Scholar 

  11. Jaramillo TC, Xuan Z, Reimers JM, Escamilla CO, Liu S, Powell CM (2020) Early restoration of Shank3 expression in Shank3 knock-out mice prevents core ASD-like behavioral phenotypes. eNeuro. https://doi.org/10.1523/ENEURO.0332-19.2020

    Article  PubMed  PubMed Central  Google Scholar 

  12. Castelhano AS, CassaneGdos S, Scorza FA, Cysneiros RM (2013) Altered anxiety-related and abnormal social behaviors in rats exposed to early life seizures. Front Behav Neurosci 7:36. https://doi.org/10.3389/fnbeh.2013.00036

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bögi E, Belovičová K, Moravčíková L, Csatlósová K, Dremencov E, Lacinova L, Dubovicky M (2019) Pre-gestational stress impacts excitability of hippocampal cells in vitro and is associated with neurobehavioral alterations during adulthood. Behav Brain Res 375:112131. doi:https://doi.org/10.1016/j.bbr.2019.112131

    Article  PubMed  Google Scholar 

  14. Wang J, Fernández AE, Tiano S, Huang J, Floyd E, Poulev A, Ribnicky D, Pasinetti GM (2018) An extract of Artemisia dracunculus L. promotes psychological resilience in a mouse model of depression. Oxid Med Cell Longev 2018:7418681. https://doi.org/10.1155/2018/7418681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Du Z, Tertrais M, Courtand G, Leste-Lasserre T, Cardoit L, Masmejean F, Halgand C, Cho YH, Garret M (2017) Differential alteration in expression of striatal GABAAR subunits in mouse models of huntington’s disease. Front Mol Neurosci 10:198. https://doi.org/10.3389/fnmol.2017.00198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lopatina OL, Malinovskaya NA, Komleva YK, Gorina YV, Shuvaev AN, Olovyannikova RY, Belozor OS, Belova OA, Higashida H, Salmina AB (2019) Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. Rev Neurosci 30(8):807–820. doi:https://doi.org/10.1515/revneuro-2019-0014

    Article  CAS  PubMed  Google Scholar 

  17. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsäter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Rogé B, Héron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39(1):25–27. doi:https://doi.org/10.1038/ng1933

    Article  CAS  PubMed  Google Scholar 

  18. Guilmatre A, Huguet G, Delorme R, Bourgeron T (2014) The emerging role of SHANK genes in neuropsychiatric disorders. Dev Neurobiol 74(2):113–122. doi:https://doi.org/10.1002/dneu.22128

    Article  CAS  PubMed  Google Scholar 

  19. Angelakos CC, Tudor JC, Ferri SL, Jongens TA, Abel T (2019) Home-cage hypoactivity in mouse genetic models of autism spectrum disorder. Neurobiol Learn Mem 165:107000. doi:https://doi.org/10.1016/j.nlm.2019.02.010

    Article  PubMed  PubMed Central  Google Scholar 

  20. Monteiro P, Feng G (2017) SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci 18(3):147–157. https://doi.org/10.1038/nrn.2016.183

    Article  CAS  PubMed  Google Scholar 

  21. Qiu S, Li Y, Li Y, Zhong W, Shi M, Zhao Q, Zhang K, Wang Y, Lu M, Zhu X, Jiang H, Yu Y, Cheng Y, Liu Y (2018) Association between SHANK3 polymorphisms and susceptibility to autism spectrum disorder. Gene 651:100–105. https://doi.org/10.1016/j.gene.2018.01.078

    Article  CAS  PubMed  Google Scholar 

  22. Cope EC, Briones BA, Brockett AT, Martinez S, Vigneron PA, Opendak M, Wang SS, Gould E (2016) Immature neurons and radial glia, but not astrocytes or microglia, are altered in adult Cntnap2 and Shank3 mice, models of autism. eNeuro. https://doi.org/10.1523/ENEURO.0196-16.2016

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, Zhou P, Ong SK, Wright MA, Zweifel L, Paninski L, Hen R, Kheirbek MA (2018) Anxiety cells in a hippocampal-hypothalamic circuit. Neuron 97(3):670-683.e6. https://doi.org/10.1016/j.neuron.2018.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ko J (2017) Neuroanatomical substrates of rodent social behavior: the medial prefrontal cortex and Its projection patterns. Front Neural Circuits 11:41. https://doi.org/10.3389/fncir.2017.00041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bissonette GB, Roesch MR (2016) Development and function of the midbrain dopamine system: what we know and what we need to. Genes Brain Behav 15(1):62–73. https://doi.org/10.1111/gbb.12257

    Article  CAS  PubMed  Google Scholar 

  26. Bey AL, Wang X, Yan H, Kim N, Passman RL, Yang Y, Cao X, Towers AJ, Hulbert SW, Duffney LJ, Gaidis E, Rodriguiz RM, Wetsel WC, Yin HH, Jiang YH (2018) Brain region-specific disruption of Shank3 in mice reveals a dissociation for cortical and striatal circuits in autism-related behaviors. Transl Psychiatry 8(1):94. doi:https://doi.org/10.1038/s41398-018-0142-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Q, Deister CA, Gao X, Guo B, Lynn-Jones T, Chen N, Wells MF, Liu R, Goard MJ, Dimidschstein J, Feng S, Shi Y, Liao W, Lu Z, Fishell G, Moore CI, Feng G (2020) Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat Neurosci 23(4):520–532. doi:https://doi.org/10.1038/s41593-020-0598-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Palkovits M (1973) Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res 59:449–450. doi:https://doi.org/10.1016/0006-8993(73)90290-4

    Article  CAS  PubMed  Google Scholar 

  29. Palkovits M, Brownstein M (1988) Maps and guide to microdissection of the rat brain. Elsevier, New York

    Google Scholar 

  30. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

    Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi:https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  32. Havranek T, Zatkova M, Lestanova Z, Bacova Z, Mravec B, Hodosy J, Strbak V, Bakos J (2015) Intracerebroventricular oxytocin administration in rats enhances object recognition and increases expression of neurotrophins, microtubule-associated protein 2, and synapsin I. J Neurosci Res 93(6):893–901. doi:https://doi.org/10.1002/jnr.23559

    Article  CAS  PubMed  Google Scholar 

  33. Seibenhener ML, Wooten MC (2015) Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp 96:e52434. https://doi.org/10.3791/52434

    Article  Google Scholar 

  34. Drapeau E, Riad M, Kajiwara Y, Buxbaum JD (2018) Behavioral phenotyping of an improved mouse model of Phelan-McDermid syndrome with a complete deletion of the Shank3 sene. eNeuro. https://doi.org/10.1523/ENEURO.0046-18.2018

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR (2011) Assessment of social interaction behaviors. J Vis Exp 48:2473. doi:https://doi.org/10.3791/2473

    Article  Google Scholar 

  36. Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, Young NB, Barbaro RP, Piven J, Magnuson TR, Crawley JN (2004) Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 3(5):303–314. doi:https://doi.org/10.1111/j.1601-183X.2004.00071.x

    Article  CAS  PubMed  Google Scholar 

  37. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858. doi:https://doi.org/10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  38. Reichova A, Bacova Z, Bukatova S, Kokavcova M, Meliskova V, Frimmel K, Ostatnikova D, Bakos J (2020) Abnormal neuronal morphology and altered synaptic proteins are restored by oxytocin in autism-related SHANK3 deficient model. Mol Cell Endocrinol 518:110924. doi:https://doi.org/10.1016/j.mce.2020.110924

    Article  CAS  PubMed  Google Scholar 

  39. Michalski D, Keck AL, Grosche J, Martens H, Härtig W (2018) Immunosignals of oligodendrocyte markers and myelin-associated proteins are critically affected after experimental stroke in wild-type and Alzheimer modeling mice of different ages. Front Cell Neurosci 12:23. https://doi.org/10.3389/fncel.2018.00023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Manduca A, Servadio M, Damsteegt R, Campolongo P, Vanderschuren LJ, Trezza V (2016) Dopaminergic neurotransmission in the nucleus accumbens modulates social play behavior in rats. Neuropsychopharmacology 41(9):2215–2223. https://doi.org/10.1038/npp.2016.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pearson BL, Corley MJ, Vasconcellos A, Blanchard DC, Blanchard RJ (2013) Heparan sulfate deficiency in autistic postmortem brain tissue from the subventricular zone of the lateral ventricles. Behav Brain Res 243:138–145. doi:https://doi.org/10.1016/j.bbr.2012.12.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, Barnes CC, Pierce K (2011) Neuron number and size in prefrontal cortex of children with autism. JAMA 306(18):2001–2010. doi:https://doi.org/10.1001/jama.2011.1638

    Article  CAS  PubMed  Google Scholar 

  43. Yang CJ, Tan HP, Du YJ (2014) The developmental disruptions of serotonin signaling may involved in autism during early brain development. Neuroscience 267:1–10. doi:https://doi.org/10.1016/j.neuroscience.2014.02.021

    Article  CAS  PubMed  Google Scholar 

  44. Muller CL, Anacker AMJ, Veenstra-VanderWeele J (2016) The serotonin system in autism spectrum disorder: from biomarker to animal models. Neuroscience 321:24–41. https://doi.org/10.1016/j.neuroscience.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  45. Siemann JK, Muller CL, Forsberg CG, Blakely RD, Veenstra-VanderWeele J, Wallace MT (2017) An autism-associated serotonin transporter variant disrupts multisensory processing. Transl Psychiatry 7(3):e1067. doi:https://doi.org/10.1038/tp.2017.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Filice F, Vörckel KJ, Sungur A, Wöhr M, Schwaller B (2016) Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Mol Brain 9:10. doi:https://doi.org/10.1186/s13041-016-0192-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee B, Zhang Y, Kim Y, Kim S, Lee Y, Han K (2017) Age-dependent decrease of GAD65/67 mRNAs but normal densities of GABAergic interneurons in the brain regions of Shank3-overexpressing manic mouse model. Neurosci Lett 649:48–54. doi:https://doi.org/10.1016/j.neulet.2017.04.016

    Article  CAS  PubMed  Google Scholar 

  48. Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T (2005) GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47(6):803–815. doi:https://doi.org/10.1016/j.neuron.2005.08.023

    Article  CAS  PubMed  Google Scholar 

  49. Catavero C, Bao H, Song J (2018) Neural mechanisms underlying GABAergic regulation of adult hippocampal neurogenesis. Cell Tissue Res 371(1):33–46. doi:https://doi.org/10.1007/s00441-017-2668-y

    Article  CAS  PubMed  Google Scholar 

  50. Leonzino M, Busnelli M, Antonucci F, Verderio C, Mazzanti M, Chini B (2016) The timing of the excitatory-to-inhibitory GABA switch is regulated by the oxytocin receptor via KCC2. Cell Rep 15(1):96–103. https://doi.org/10.1016/j.celrep.2016.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang M, Bozdagi O, Scattoni ML, Wöhr M, Roullet FI, Katz AM, Abrams DN, Kalikhman D, Simon H, Woldeyohannes L, Zhang JY, Harris MJ, Saxena R, Silverman JL, Buxbaum JD, Crawley JN (2012) Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci 32(19):6525–6541. doi:https://doi.org/10.1523/JNEUROSCI.6107-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yoo T, Cho H, Lee J, Park H, Yoo YE, Yang E, Kim JY, Kim H, Kim E (2018) GABA neuronal deletion of Shank3 exons 14–16 in mice suppresses striatal excitatory synaptic input and induces social and locomotor abnormalities. Front Cell Neurosci 12:341. https://doi.org/10.3389/fncel.2018.00341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kouser M, Speed HE, Dewey CM, Reimers JM, Widman AJ, Gupta N, Liu S, Jaramillo TC, Bangash M, Xiao B, Worley PF, Powell CM (2013) Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission. J Neurosci 33(47):18448–18468. doi:https://doi.org/10.1523/JNEUROSCI.3017-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, Feng G (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472(7344):437–442. https://doi.org/10.1038/nature09965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the Grant Agency of the Ministry of Education and the Slovak Academy of Sciences (VEGA 2/0155/20, VEGA 2/0148/21), as well as by the Slovak Research and Development Agency project (APVV-15-205 and APVV-15-0045). We would like to thank Michael Sabo for proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors had full access to all the data in the study and take responsibility for the integrity of the data and accuracy of the data analysis. Conceptualization: JB; ZB; Investigation: SB; ER; AR; JF; AS; BM.; Resources: ER, DO; ZB, JB; Writing - Original Draft: SB; ER; JB; ZB; Writing - Review & Editing: SB, DO, JB; ZB; Funding Acquisition: DO; JB; ZB.

Corresponding author

Correspondence to Jan Bakos.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 29.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukatova, S., Renczes, E., Reichova, A. et al. Shank3 Deficiency is Associated With Altered Profile of Neurotransmission Markers in Pups and Adult Mice. Neurochem Res 46, 3342–3355 (2021). https://doi.org/10.1007/s11064-021-03435-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03435-6

Keywords

Navigation